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Executive Summary 
Synopsis: This workshop’s outcome is twofold. It highlighted potential breakthrough advances 
in geosciences resulting from computing research. It also revealed groundbreaking computing 
research challenges motivated by problems in geosciences. These outcomes call for synergistic 
research in computing and geosciences. 

 

The goal of the Intelligent Systems for Geosciences workshop was to identify avenues for 
future research on intelligent systems that will result in fundamental new insights in geosciences. 
Geosciences representatives brought requirements from Earth, ocean, polar, and geospace 
sciences. Participants from intelligent systems represented fields such as information integration, 
machine learning, knowledge representation, semantics and metadata, geospatial computing, 
robotics, visualization, and augmented reality. The workshop built on the momentum of the NSF 
EarthCube initiative for geosciences and was informed by ongoing cyberinfrastructure efforts.   

Many aspects of geosciences research pose novel problems for intelligent systems research. 
Geoscience data is interesting to computer scientists because it tends to be uncertain, 
intermittent, sparse, multi-resolution, and multi-scale. Geosciences processes and objects often 
have amorphous spatio-temporal boundaries. The lack of ground truth makes model evaluation, 
testing, and comparison difficult.  Overcoming these challenges would greatly benefit the 
geosciences and would require breakthroughs in intelligent systems. 

Workshop participants agreed that in order to address these challenges new research is 
required in intelligent and information systems, including: 

• Knowledge representation: Capturing scientific knowledge to represent our 
understanding of geoscience processes will push the limits of the state of the art. 

• Sensing and robotics: New data collection capabilities that leverage scientific 
knowledge for optimized data collection and adaptive sampling.  

• Information integration: Geosciences data and models need to be interconnected and 
easy to manipulate in an integrated system of systems.   

• Machine learning: Algorithms need to identify and incorporate appropriate constraints 
as required by the governing geosciences processes.   

• Intelligent user interfaces: Interactions must be guided by the geoscience questions that 
provide context for the content to be conveyed.  

All these areas cannot be investigated separately as they are interdependent.  For example, 
improvements in sensing will facilitate learning, deeper representations of data will facilitate 
information integration, and richer learning algorithms will lead to better interfaces. 

Recommendations from the workshop include: 1) Interdisciplinary community building 
through sustained multi-year collaborations; 2) Educating and building awareness of computer 
scientists and geoscientists in each other’s fields, and 3) Establishing direct partnerships between 
intelligent systems and geoscience researchers. Participants noted that these activities will result 
in innovations in both intelligent systems and geosciences.  
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1. Introduction 

The goal of this workshop was to synthesize a vision and needs for intelligent systems 
research that will provide new capabilities to advance geosciences. In geosciences, the workshop 
identified starting requirements from Earth, ocean, polar, and atmospheric and geospatial 
sciences that would benefit from intelligent systems advances. In intelligent systems, the 
workshop included participants from fields such as information integration, machine learning, 
knowledge representation, social computing, visualization, and intelligent user interfaces.  The 
workshop was informed by existing cyberinfrastructure efforts that support the geoscience 
community. The workshop served as a bridge to find areas of mutual benefit and to begin 
connecting these communities to explore collaborative research.  

Participants discussed how to tackle problems in heterogeneous data integration and 
visualization (e.g., hand-made sketches, aerial imagery, field-data repositories, stakeholder 
interviews), ontological reasoning with scientific metadata and mathematical models (e.g., 
representing uncertainty, simulation predictions, evolving theories).  Additionally, participants 
were asked to consider potential uses for intelligent assistants that make scientists more efficient 
by automating routine tasks that require some level of knowledge about the science context and 
that facilitate information sharing, collaborative workflow design and management to support 
data analytics, and sophisticated machine learning techniques to analyze geosciences data. 
Participants identified complexities and challenges in the application of intelligent systems to 
geoscience domains; addressing these challenges will require intensive collaborations including 
researchers from geosciences and information systems.  The workshop catalyzed a community 
and research agenda in the emerging area of intelligent systems grounded on geoscience 
requirements. 

The NSF EarthCube Initiative1 presents an opportunity for collaborative research on novel 
information systems enhancing and supporting geoscience research efforts. EarthCube enables 
geoscientists to address the challenges of understanding and predicting a complex and evolving 
Earth system by fostering a community-governed effort to develop a common 
cyberinfrastructure to collect, access, analyze, share and visualize all forms of data and 
resources, using advanced technological and computational capabilities [Gil et al 2014].  

Workshop participants were asked to contribute position papers prior to the workshop.  The 
papers, which are included in the Appendix of this report, outlined a range of community 
activities, recurring events, and ongoing projects where geoscientists and intelligent systems 
researchers are already interacting. These activities, summarized in Section 2, illustrate how 
research advances in intelligent systems are already impacting the geosciences. Full position 
papers from each participant can be accessed online at the Web site for the workshop.2 

                                                
1 http://www.earthcube.org 
2 http://www.is-geo.org 
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To open the workshop, the workshop chairs summarized the position papers in the first 
session of the meeting.  The emerging themes were organized around the phases of data lifecycle 
management: data collection, data integration, data analysis, data processing, and data 
visualization.  This opening session began to draw connections between geosciences and 
intelligent systems research. To elaborate on these themes, the next two workshop sessions were 
organized as a “World Café”.3 The “World Café” approach is a method for promoting open 
dialogue among groups. Before the event a set of substantive questions was developed around 
themes from the participant position papers and the questions were distributed around tables in 
the meeting space. Each table was assigned a theme with the questions to seed entry points into 
conversations; a set of participants stayed at each table while others rotated to balance continuity 
and diversity in each discussion and to build relationships among participants. The first “World 
Café” session had tables with geosciences themes with a geoscientist facilitator while computer 
scientists rotated along with the non-facilitating geoscientists.  In the second “World Café” 
session, intelligent systems themes were assigned to the tables and the geoscientists rotated 
among tables with non-facilitating computer scientists.  The “World Café” design created 
opportunities for small group interaction across the disciplines and the discussions were lively 
and productive.   

The initial sessions were followed by plenary discussions on the themes that arose from each 
of the “World Café” tables.  The results of these discussions are summarized in Section 3 of this 
report. Participants then reflected on grand challenges in geosciences that cannot be addressed 
without significant innovations over existing capabilities.  These are presented in Section 4 of 
this report. 

As participants gained familiarity and shared understanding of the topics, themes, and 
opportunities, discussions and focus turned to formulating a research agenda for intelligent 
systems that would advance these issues.  The participant consensus was that intelligent systems 
that incorporate existing scientific knowledge and the geoscientist’s context enable new research 
challenges and opportunities for both arenas.  This alone would enable novel forms of reasoning 
and learning about geosciences data.  This research agenda is described in Section 5. Finally, 
participants discussed recommendations and next steps, which are included in the closing section 
of this report. 

2. Existing Interactions Between Intelligent Systems and Geosciences 

There are several existing threads of interactions between intelligent systems researchers and 
geoscientists that we summarize here. These activities were reported by workshop participants in 
their pre-workshop statements, and helped ground the discussions throughout the workshop. 

 

                                                
3 http://en.wikipedia.org/wiki/World_Caf%C3%A9_%28conversational_process%29 
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2.1 Workshops and Other Community Activities 

Several prior community activities have led to fruitful interactions in areas of common 
interest to geoscientists and intelligent systems researchers.  NSF funded a Discovery 
Informatics workshop in 2012, which was broader in scope than geosciences, and was followed 
by a series of workshops on intelligent systems for scientific discovery4. An ongoing Climate 
Informatics workshop series5, focused on machine learning in climate research, is also partially 
funded by NSF.  The NSF-funded Computing Research Association Computing Community 

                                                
4 http://www.discoveryinformaticsinitiative.org 
5 http://www.climateinformatics.org 

 

Figure 1.  The novel Shared Reciprocal Nearest Neighbor (SRNN) method [Kawale et al. 2013] 
identifies locations with negatively correlated temporal behavior, shown using black dots, shading, 
and edges (lines) that link them. Here, the quantity being evaluated is the global monthly mean Hadley 
Centre sea level pressure (SLP). Region-pairs represent climate dipoles, and are key to understanding 
climate variability. The SRNN method was able to identify most of the already-known prominent 
dipoles in SLP data, and was also able to suggest new dipoles such as the black edge shown on the 
east side of Australia.  This newly discovered dipole was found to represent circulation patterns that 
are associated with long-term droughts over Australia [Liess et al. 2014].  The lines are colored to 
indicate correlation of this dipole with other dipoles around the globe. Poor correlations (as reflected 
in light colored edges) suggest that the newly discovered dipole is unique. This method, unlike 
previous approaches, is able to identify weak and strong dipoles simultaneously, and thus enables 
comprehensive study of behavior, interactions, and dynamics of various dipoles.   
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Consortium ran a Visioning Workshop on Spatial Computing6.  The Polar Cyberinfrastructure 
division of NSF’s Division of Polar Sciences supported a workshop reviewing the state and 
direction of cyberinfrastructure in support of that geoscience community (Pundsack et al. 2013).  

2.2 Large Cross-Disciplinary Projects 

Two major NSF Expeditions awards are of note.  Expeditions projects have been funded in 
recent years by the NSF CISE directorate as major initiatives to catalyze new research 
communities.  One NSF Expeditions award focuses on “Machine Learning for Climate 
Research”7.  This has been a very successful project in generating advances in machine learning 
while making contributions to climate research.  Figure 1 shows a major result that is illustrative 
of the kind of research taking place in this project.  

A second NSF Expeditions award of note is “Computational Sustainability: Computational 
Methods for a Sustainable Environment, Economy, and Society”8.  This project has catalyzed a 
research community on computational sustainability, and has spawned a series of special tracks 
on that topic at major AI conferences.  The focus is more on biodiversity and environmental 
biology than geosciences proper. 

Other major efforts resulted from the NSF ITR program.  These include “GEON: A Research 
Project to Create Cyberinfrastructure for the Geosciences”9, and “The SCEC Community 
Modeling Environment: An Information Infrastructure for System-Level Earthquake 
Research”10. The NSF ITR initiated several programs within Geoscience that later were 
continued under the NSF and AFOSR DDDAS programs and other initiatives. 

2.3 EarthCube 

The NSF EarthCube initiative has funded several projects that use intelligent systems 
methods to address particular aspects of geosciences research.  Relevant EarthCube-funded 
projects include:  

• BCube uses semantic technologies to map terms and data across diverse resources for 
interdisciplinary data discovery and access;  

• Earth System Bridge is developing ontologies and representations of essential 
variables and assumptions to map across model representations;  

• EarthCollab is using semantic and linked data technologies to represent and connect 
people, projects, data, and documents;  

• GeoDeepDive is using natural language processing techniques to extract structured 
geo-located information from published articles;  

                                                
6 http://www.cra.org/ccc/visioning/visioning-activities/spatial-computing 
7 http://climatechange.cs.umn.edu/ 
8 http://computational-sustainability.cis.cornell.edu/ 
9 http://www.geongrid.org/ 
10 http://scec.usc.edu/research/cme/ 
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• GeoLink is creating a linked open data repository that uses semantic web 
representations to create open web objects with geoscience data;  

• GeoSemantics is using a graph knowledge base to connect and reason about 
geoscience objects;  

• OntoSoft is using ontologies to describe scientific software metadata, and intelligent 
user interfaces to assist users to publish and describe their software.   

More details about these and other EarthCube activities can be found at the EarthCube Web 
site1.  

Perhaps the longest running of these projects is GeoDeepDive, illustrated in Figure 2. 
GeoDeepDive is a machine reading system that uses natural language processing techniques to 
extract large amounts of geoscience data that currently reside in the text, tables, and figures of 
scientific publications.  Many important science questions require synthesizing legacy data that 

 

Figure 2. A machine reading system that extracts space-time indexed information from the literature 
and integrates it with existing paleogeosciences data focusing on the rock record.  GeoDeepDive uses 
natural language processing techniques for parsing, document layout, and font recognition over a high-
throughput computing infrastructure [Peters et al. 2014].  (a) Results from GeoDeepDive compared to 
results achieved by humans manually entering data from the published literature. Two different 
machine compilations are shown: a PDD overlapping corpus consisting of documents also read by 
humans and entered into the Paleobiology Database (http://paleobiodb.org), and a PDD whole corpus 
that comprises a larger set of documents.  The latter extracted more information than what was 
obtained through a compendium manually assembled by Jack Sepkoski over the course of more than 
10 years.  (b) The machine-generated genus diversity history for select class-level taxa.  
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is only available in the published literature, and currently involve slow and costly manual 
extraction.  GeoDeepDive demonstrates that data can be automatically extracted from the 
literature with results comparable to manual extraction. 

In addition to these funded projects, a series of EarthCube End User Workshops in different 
areas of geosciences occurred between 2012 and 2014.  A majority of reports documenting these 
workshops consistently point to requirements in semantic metadata standards and interactive 4D 
visualizations.  These requirements indicate that the geosciences community considers 
knowledge representation and visualization as important priorities in their research, and that the 
EarthCube geoscience community is poised for the kinds of interactions and collaborations that 
this workshop aimed to foster.  

2.4 The Challenges in Crossing Paths  

The opportunities for geoscientists to interact with intelligent systems researchers are not 
many.  First, many geoscientists are in institutions with no significant intelligent systems 
researcher capabilities and are unaware of the possible benefits of such collaborations.  This 
includes not only academia but also many government agencies.  Second, there are not many 
community events devoted to synergistic work between geosciences and intelligent systems.  
The workshops and activities mentioned above are either very general and encompass many 
sciences beside geosciences, or they are very specific to an area in geosciences and/or intelligent 
systems.  Third, there are no broadcast channels to disseminate successful uses of intelligent 
systems in geosciences.  This is all in stark contrast with biomedical research, where cross-
disciplinary forums abound in the form of events (e.g., the Intelligent Systems for Molecular 
Biology conference), journals (e.g., Bioinformatics), and community infrastructure (e.g., the 
National Center for Biomedical Ontologies). In geosciences, events such as the American 
Geophysical Union (AGU) meetings may include relevant sessions (e.g., on ontologies), but 
intelligent systems researchers do not typically attend these meetings.  Conversely, events such 
as the Association for the Advancement of Artificial Intelligence include special tracks (e.g., 
sustainability) but they are not forums where geoscientists participate.  The opportunities for 
exploring relevant research, formulate collaborations, and learning about success stories are very 
few, but offer strong evidence of successful results to provide the confidence for increasing the 
collaborative scope.  

Figure 3 illustrates an example of an area of research with enormous potential but with little 
or no awareness in geosciences.  The advent of low-cost virtual reality devices opens new 
possibilities for scientists to experience different locations and timeframes, to explore datasets 
and annotate findings and possible hypotheses. 

In summary, although there have been significant and beneficial interactions between the 
intelligent systems and geosciences communities, the potential for synergistic research in 
intelligent systems for geosciences is largely untapped. 
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3. Initial Synthesis of Emerging Themes 

A major challenge in cross-disciplinary workshops is the diversity of viewpoints, vocabulary, 
and research interests represented by participants.  To create common ground across disciplines, 
an initial synthesis of emerging themes was done through discussions around five aspects of the 
data lifecycle that were familiar to all participants: data collection, data integration, data 
processing, data analysis, and data visualization.  These discussions were conducted in two 
phases. The first phase was driven by geoscientists and focused on science drivers, and the 
second phase driven by intelligent systems researchers who examined those drivers and derived 
the required capabilities for intelligent systems.   

Figure 3.  A low-cost virtual reality device on a tablet can be used to navigate and annotate a site.  The 
Martian landscape shown here was created from data provided by NASA's Jet Propulsion Laboratory. 
Placing specially designed goggles over a tablet, scientists can explore the Mars the landing site for 
Curiosity Rover at Gale Crater. The site was chosen because it has shown signs that water was present 
over its history.  They can survey the geological features in stereoscopic 3D by turning their heads and 
look up and down.  Controls on the surface of the tablet allow users to travel across the terrain, visit 
different sites of interest, and annotate with text or narration. (Source: David M. Krum, University of 
Southern California’s Institute for Creative Technologies). 
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Figure 4 shows an overview of the topics for each of the aspects of the scientific data 

lifecycle discussed, which are presented in the rest of this section.  For each aspect of the data 
lifecycle, we discuss the science drivers followed by the required capabilities for intelligent 
systems.	  	  

3.1 Data Collection 

Collecting observations for all physical parameters everywhere and all the time would be 
ideal, but is logistically impractical given resource and instrumentation constraints.  The goal 
instead is to amplify how much science is made possible within those constraints, which means 
increasing the sophistication of existing approaches to data collection.	  	  	  

 

 

Figure 4.  Common ground across disciplines was facilitated through discussions of particular aspects 
of the data lifecycle in science: data collection, data integration, data processing, data analysis, and 
data visualization.  For each of these topics, workshop participants articulated science drivers, ongoing 
research in intelligent systems with potential to support geosciences, and additional requirements 
given the longer-term science drivers.  New required capabilities for intelligent systems are 
summarized here for each topic.  
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3.1.1 Science Drivers 
Although highly desirable, the collection of data for all observable parameters and at all 

temporal and spatial scales is not possible.  Scientists are always limited by practical resource 
constraints, and some natural phenomenon will likely 
remain unobservable.  Further, practical constraints affect 
the ability of almost every instrument to collect 
observations about various parameters in a time period.  
For example, an instrument may be positioned to collect 
an observation at a given time and take too long to 
reposition to collect a different observation soon after 
that.  Other constraints include the cost of maintaining 
and operating instruments, battery life, data storage and 
transmission limits, harsh natural conditions, remote 
locales, international policies, and other factors that limit 
the temporal and spatial density of data collection.   

Resource constraints can be mitigated through 
optimization theory and statistical experimental design.  
These techniques lead to data collection approaches that 
obtain the most information while respecting practical 

observation constraints and at the minimum cost without compromising the needs for appropriate 
bounds on uncertainty.  Ultimately, the parameters observed, as well as their temporal and spatial 
scales on which they are sampled, need to match the needs of the prioritized science question(s). 

A complementary approach is dynamic sensor steering.  Advances in sensor technologies and 
connectivity offer the ability to make sophisticated real-time decisions regarding how and when 
to collect and deliver geoscience-related measurements.  These include unmanned vehicle sensor 
platforms, low-cost embedded processors (such as BeagleBone, Intel Edison, and Raspberry Pi), 
as well as multicore mobile devices to effectively communicate remotely with sensors.  Real-
time steering of instrument sensors or activation of complex sensor networks could depend on 
observations, event triggers, and/or model analysis and predictions.  Many such techniques are 
currently being investigated and in some cases used in geoscience, including active and selective 
heuristic sampling approaches, dynamic sensor steering, dynamic integration from 
heterogeneous sensors, closed loop synthesis from modeling to sensing in both real world and 
observing system simulation experiments.  

Dynamic sensor steering can increase resolution for data collection specifically when 
interesting events happen (e.g., a sudden solar flare) while saving precious resources (e.g., 
energy, bandwidth, storage space, manual instrumentation access), which are scarce in field 
deployments. The classical pipeline of data collection, data processing, data analysis could be 
modified to include additional automation and establish feedback between different stages to 
steer online decisions on data collection and thus provide finer-grained observations when 
needed. 

“Although highly desirable, 
the collection of data for all 
observable parameters and at 
all temporal and spatial scales 
is not possible, as scientists 
are always limited by 
practical resource 
constraints. […] The goal is 
to amplify how much science 
is made possible within those 
constraints, which requires 
increasing the sophistication 
of existing approaches to data 
collection.” 
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Adaptive steering sensor configurations combined with model-based sensitivity analysis 
would provide greater insight into data collection and data processing infrastructures while data 
collection is ongoing. Advances will include integration of related data collection efforts around 
the world, including interaction with simulated results of related systems.  One example is using 
sensors for on-the-fly sensitivity analysis, optimization, uncertainty analysis, visualization of 
data, and modeling the results. These advances will produce more relevant, efficient, integrated 
data collections. 

Of particular interest is the automatic annotation of data during collection with descriptive 
and contextual metadata.  Metadata and provenance annotations enable others to understand the 
data and reuse them.  Moreover, they are instrumental to extend the usability of the data for 
research problems beyond the original intent. Mobile devices are already being used as cost-
effective ways to provide metadata information (e.g., GPS coordinates, camera attributes, etc.) in 
diverse file formats. Sensor platforms need to be extended to incorporate similar capabilities to 
enable automated metadata capture. Measures of data error and bias are often underrepresented 
in metadata, and yet are critical to enable data reuse. 

Finally, data integration remains very challenging. Sensors and instruments collect 
increasingly more sophisticated kinds of data, and a broader range of observations. Geoscientists 
coming from different field traditions maintain different methodological, semantic, and data 
management practices. When captured at all, metadata are non-standard and inconsistent. 
Scientific learning often happens at the point of data aggregation and comparison, and is needed 
before integration can be successful. This complexity pushes the limits of current data fusion 
algorithms and automated approaches, and is exacerbated by the lack of metadata on data error 
and bias. 

3.1.2 Required Capabilities for Intelligent Systems 
Collaborative research between intelligent systems researchers and geoscientists is needed to 

provide new capabilities for more sophisticated real-time decisions regarding how and when to 
collect geoscience-related measurements.  Desirable capabilities include:  

• Optimization in experimental design could be improved through statistical and dynamical 
techniques such as adaptive sampling and active learning 

• Integrated data collection and analysis would target more responsive and adaptive 
scientific data processing approaches 

• Real-time steering of heterogeneous sensors depending on observations or model output 
is underway in many geoscience fields but stronger algorithmic underpinnings would be 
desirable 

• Dynamic reconfiguration of sensor networks and instruments would enable targeted data 
collection depending on the science questions 
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• Automatic detection of interesting events requires improved image and pattern 
recognition approaches to enable dynamic redirection of data collection strategies 

• Automatic metadata annotation at the collection point would require more sophisticated 
approaches to provenance and representations of sensors, instruments, platforms, etc. 

• Multi-sensor data fusion remains very challenging as instruments increase in 
sophistication and coverage  

• Immersive data exploration interfaces could be designed to highlight to scientists 
observation patterns and unusual trends 

 
The vision underlying these capabilities is the autonomic management of sensory 

environments through dynamically integrating data and models. An intelligent sensor dashboard 
could provide a scientist with the ability to steer data collection to suit the goals of their study 
using: 1) A high-level real-time view of the observations 2) Integration of preliminary analytic 
results with applicable reference data and/or models; and 3) The ability to steer data collection 
assets to suit the goals of their study.   

3.2 Data Integration 

Earth systems are integrated, but current geoscience datasets and models are not.  Our ability 
to understand the Earth system is heavily dependent on our ability to integrate geoscience data 
and models across time, space, and discipline.  

3.2.1 Science Drivers 
Access to integrated data is central to research questions in many areas of the 

geosciences.  Methods and tools that support the integration of geoscience data will accelerate 
the pace of research and make some advances possible that would not be feasible without 
wholistic, integrated data and analysis spanning the entire range of geoscience disciplines.   

Integrating geosciences data requires handling 
intermittent and multi-scale data as well as sparse data 
since Earth science data derives from a variety of 
sources with differing coverage, scale, and 
resolution.  Individual geosciences researchers may 
collect their data using idiosyncratic formats and 
frequencies, often inconsistently annotated and rarely 
shared.  (Semi-)automated characterization of datasets 
would lower the barriers to data sharing by enabling 
data pipelines that could readily transfer data to other 
users. Identifying and facilitating the use of appropriate 

“Earth systems are 
integrated, but current 
geoscience data and models 
are not.  Our ability to 
understand the Earth system 
is heavily dependent on our 
ability to integrate geoscience 
data and models across 
disciplines.” 
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standard representations would enable the integration and discovery of a wealth of very valuable 
data. Any standardization would need to maintain enough flexibility to accommodate the 
creativity needed to study new phenomena and data types. 

Data integration also requires harmonization of data and model components from across 
geoscience domains that do not routinely interact with one another (e.g., geological sample-
based data sets and geophysical results; see EarthScope initiatives and others for small-scale, 
regional examples). Mapping terminology and annotations across research teams and domains 
requires developing shared understanding and corresponding terminology to establish a common 
interdisciplinary knowledge foundation. Capturing data integration pipelines would enable others 
to reuse them and integrate new data more consistently.  The propagation of metadata over these 
pipelines would enable derived characterization of the integrated datasets.  Scalability becomes 
an issue given the ever-increasing volumes of data that need to be integrated in geosciences.  
Given the fundamental nature of most geoscience datasets, space and time are likely to serve as 
primary organizing principles for integration, though handling of data outside of this framework 
will be needed in some circumstances.   

In addition, researchers often do not know what data are available to integrate with the data 
that they collect on their own. While open data sharing is increasing, finding data at the desired 
scales is often a challenge. Connecting scientists with data related to their topical interests or the 
locations they are investigating is needed to make these connections more efficient and the 
scientific investigations more productive. 

Finally, a great deal of data collected in the past is only available in technical papers. To 
create a useful dataset from disparate observations reported in different papers, scientists have to 
identify the papers and extract the data from tables and charts by hand. This is very time 
consuming and often too costly to do. Methods for finding and delivering data from previously 
published resources are starting to be developed (see Figure 2), but efforts are in their infancy. 

3.2.2 Required Capabilities for Intelligent Systems 
Fully automated data integration is far beyond the state of the art.  AI researchers would call 

it an “AI-hard” problem, meaning that it would require solving the central problem of making 
computers as intelligent as people.  While full automation is out of reach, there is much room for 
improvement over current data integration tools which require a significant investment in time 
and effort to learn and apply before there is any scientific payoff.  More proactive data 
integration techniques are needed to automate often basic integration tasks that take up valuable 
researcher time.   Desirable capabilities include:  

• (Largely) automated recognition of dataset mappings would require systems that have 
knowledge about how data are collected, processed, and represented across scales in 
different areas in geosciences, including initial scientific purpose and uncertainty 
estimates as well as precise conceptual mappings across scientific domains 

• Automated reuse of data integration pipelines would require standardized data sets and 
systems that capture data integration workflows and reapply them to new datasets 
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• Automated metadata generation during data integration would ensure that data are 
properly interpreted and would additionally manage metadata created during data 
collection to avoid loss  

• Scalable data integration approaches that would require algorithms and hardware 
interoperability for real-time data integration for large and possibly distributed datasets 

• Search and retrieval of datasets across disciplines including methods for location- and 
time-based data retrieval and subsetting 

• Data recommender systems that can analyze the data that researchers use and suggest 
relevant datasets and publications as well as connect scientists working in related areas 

• Exploiting the published literature by discovering, locating, extracting, and integrating 
knowledge from text, tables, and figures of disparate papers  

 
The results of data and model integration would be fully interconnected, open data sources to 

support geoscience research.   This integrated information ecosystem would also provide fully 
coupled Earth system models that could be efficiently calibrated with and tested against 
empirical data from the range of geosciences.  Ideally, an integrated ecosystem for data and 
models would provide a playground for researchers to support exploration and hypothesis 
development, enabling them to better understand not just their own areas, but how their expertise 
and data sets fit into a larger integrated model of the evolving Earth system.  In addition, the data 
and model integration system would provide a basis for ranking and evaluating incoming data 
and automatically push data and model results to relevant researchers.   Such a system would 
also facilitate the dynamic tracking and discovery of new research communities that are 
producing or using related data pertaining to a common problem, a geographic region, or a 
geological time interval. 

3.3 Data Analysis	   

Complex geoscience research falls into an interesting situation where it can be both data rich 
and data poor. That is, while it may be possible to collect very large amounts of data about a 
phenomenon, the data information content may be insignificant compared to that needed to 
characterize the phenomenon for scientific purposes or practical applications.  Scientists need 
new approaches that supplement data with already existing knowledge about the underlying 
processes. This would augment researchers’ ability to make use of whatever data is available. 

3.3.1 Science Drivers 
The current scientific understanding of various phenomena and processes in geosciences is 

limited in part by the methodologies used to create models for such phenomena. Scientists have 
refined models based on disagreement between model projections and true observations, but the 
scale and complexity of geoscience phenomena make a manual exercise of model refinement 
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based on data difficult and time consuming. It also 
lacks the reproducibility needed to identify 
advantageous and disadvantageous methods of data-
model integrations and model development. Data 
analysis methods that encompass refinement of models 
can expedite the process and make it testable, and this 
synergistic approach is expected to surpass the 
capabilities of purely model-driven or purely data-
driven approaches.  

A unique and challenging aspect of geosciences 
phenomena is that they are extremely high-dimensional, 
involving thousands of variables along with their 
spatiotemporal or other types of complex interactions. 
Data analysis for high-dimensional problems is 
challenging, although the underlying physics governing 
the variables substantially constrains the variables 
involved, leading to low intrinsic dimensionality, e.g., 
when viewed as a manifold. Further, such physical 
phenomena often exhibit multi-scale behaviors, which 
need to be suitably captured to improve our understanding. 

For predictive modeling purposes, one often has a small number of observations from 
phenomena of interest, which leads to a `high dimensions, small sample’ regime for predictive 
modeling. Classical statistical machine learning methods (e.g., least squares regression, logistic 
regression, etc.) assume that the number of samples is much larger than the ambient 
dimensionality. For the `high dimensions, small samples’ regime, available methods include, for 
example, using field data to produce simple models, using expert knowledge to introduce prior 
information terms dominant to attain tractable problems, and producing a range of results based 
on unresolvable variability. The data integration and reproducibility envisioned in this report 
would allow these methods to be analyzed and compared in ways that no scientist has been able 
to do up to now. There is also need for new approaches, such as non-parametric approaches that 
consider the geometry of the problem induced by the physics. For example, greater integration of 
nonstationary behavior that is often averaged to obtain values to compare with measured values, 
long-memory processes, nonlinear dynamical systems, and phase transitions. There is also a need 
to characterize atypical behavior, i.e., behavior in the tails of distributions. This is useful, for 
example, to understanding extreme precipitation, heat waves, etc. 

Physical phenomena in the context of geosciences often exhibit variability due to complex 
interactions and nonlinear dynamics. Improved methods for quantifying the uncertainties 
associated with such variability would help improve the scientific understanding of such 
phenomena. Further, being able to decompose the overall uncertainty into natural/inherent 
components and structured components may lead to improved models. Uncertainty usually 

“Complex geoscience 
phenomena fall into an 
interesting situation where 
[…] while it may be possible 
to collect very large amounts 
of data about a phenomenon, 
the information content may 
be tiny compared to that 
needed to characterize the 
phenomenon...  Scientists 
need new approaches that 
supplement data with already 
existing knowledge about the 
underlying processes, which 
would augment their ability to 
exploit whatever amount of 
data is available.” 
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comes due to limited availability of data, metadata, or both.  Reusing models for new locations 
without quantifiable data is also a source of uncertainty, since we cannot assume that the data 
and models will be appropriate in the new location. 

Directing data collection is needed to sample the space and gather data needed to guide 
model development. Active sampling, balancing the needs of field science and modeling, would 
enable the collection of datasets that are most effective for advancing multiple science questions 
while maintaining realistic costs. 

Probabilistic models of high-dimensional physical phenomena can encode the known 
dependencies among the variables involved, and can then be used to do inference, perform 
simulations for what-if scenarios under suitable conditioning, attribution of observed 
phenomenon, among others. Being able to explore the dependency structure of such graphical 
models can also be potentially leveraged to build causal models of the underlying physical 
processes explaining the observations.  

Finally, there is limited availability of usable ground truth data for many modeling problems.  
This limits our ability to evaluate and improve models using traditional methods.  

3.3.2 Required Capabilities for Intelligent Systems 
Over the past two decades, a significant focus for data analysis and machine learning has 

been on applications arising out of Web applications, such as text, image, and video analysis, 
recommendation systems, and ad placement among others. While considerable progress has been 
made on these problems, the models and methods are not directly transferable to data analysis 
problems in geosciences because of a one key reason: variables and associated phenomenon in 
geosciences are governed by precise physical laws which need to be taken into consideration for 
data analysis model and method development. This observation illustrates the need for an 
entirely new paradigm of data analysis, where the models and methods are cognizant of the 
physical constraints while developing predictive capabilities or understanding structure from 
data. Bridging statistical machine learning models and physical characterizations, say based on 
partial differential equations, will lead to new challenges in estimating the parameterization in 
the hybrid models, leading to new questions in numerical methods and optimization. Further, 
models capturing dynamics have to also consider stability of the system, leading to additional 
constraints under which such numerical methods have to operate. The resulting models also need 
to be studied from the perspective of predictive skill, i.e., the ability to model observed 
phenomena accurately, predictability and reliance on initial conditions and other parameters, and 
overall sensitivity analysis.  Desirable capabilities include:  

• Machine learning algorithms cognizant of physical laws that can use physics to constrain 
high dimensionality problems   

• Non-parametric approaches that consider physical constraints and dynamic processes 

• Predictive modeling for extreme situations, to handle the behaviors in the tails of 
distributions 
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• Quantifying uncertainties of models based on available data and physics metadata 

• Adaptive sampling and active learning techniques to steer data collection to sampling the 
space where a model has large uncertainties 

• Manifold learning techniques for model reduction, uncertainty quantification, 
compensation for model error. 

• Information theoretic learning for dealing with non-Gaussian, high-dimensional 
inference. 

• Causal models that can explain observations and can be used to make inferences 

• Methodologies for evaluation in the absence of ground truth data 

3.4 Data Processing 
Studying geoscience phenomena requires the ability to process data that is incredibly diverse, 

encompassing multiple disciplines, scales, and methodologies.  Geoscientists need data 
processing frameworks that minimize human effort to harness this diversity. 

3.4.1 Science Drivers 
Data processing and data analysis should be as 

efficient as possible.  A geoscientist may run the same 
algorithms multiple times by tuning different 
parameters to explore various possible paths and 
conduct correlations, until reaching satisfactory results.  
Typically, data analytics is a multi-step procedure, 
often part of a scientific workflow. A scientific 
workflow refers to a formal way of defining, 
automating, and repeating such multi-step 
computational procedures. To enable the reproducibility 
and reusability of scientific workflows, a wholistic 
collection of metadata has to be captured. Metadata 
should include scientific intent, algorithms and models, ordering of algorithm and model 
application, workflow versioning, input datasets, how data were collected, parameter settings, 
boundary conditions, and any other relevant aspects that document the provenance of new 
results.   

Access to provenance of data, including where and how they were collected, under what 
conditions, for what intent, by whom, and application of any processing from raw values, is of 
critical importance in geoscience research. Correctly representing, integrating, and propagating 
provenance is an important precursor to data sharing and reuse. For example, knowing the 
weather conditions in which sensor measurements were taken or are about to be taken is critical 
for cleaning and selecting the data. Understanding the fidelity and limitations of a particular 
sensor platform is vital for appropriately representing and handling the inherent uncertainty. 

“Studying geoscience 
phenomena requires the 
ability to process data that is 
incredibly diverse, 
encompassing multiple 
disciplines, scales, and 
methodologies.  Geoscientists 
need data processing 
frameworks that minimize 
human effort to harness this 
diversity.” 
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Provenance is also needed for citizen science and crowdsourcing.  Given the availability of 
provenance standards, including W3C PROV and ISO 19115, provenance information should be 
routinely recorded in a structured, searchable way by geoscientists.  

The scientific community is increasingly moving towards open publication, and when a 
research article is published all related metadata are published as well. The provenance and 
workflow that are often implicit in traditional research papers should be published explicitly in 
an open and accessible manner, using standards that maximize their dissemination and reuse. 
Reproducibility is a necessary quality of scientific research. In order to verify any new results, 
other geoscientists should be able to re-run experiments.  

The amount of data available to scientists continues to grow, but data are in diverse formats 
and repositories, available in non-standard projections and scales, have inconsistent 
documentation, and cross-disciplinary boundaries with conceptual and semantic shifts.  
Therefore it takes a lot of effort to both articulate science needs and to them find relevant data to 
explore the problem at hand.  Recommender systems that understand what scientists are trying to 
do could anticipate what data, metadata, models, workflows, and people may be useful for their 
task.  Even when relevant resources are found, it is often difficult for a scientist to determine if 
that resource is trustworthy.  The ability to access usage and relevance meta-information would 
greatly improve the confidence and trust on the resources found.  

3.4.2 Required Capabilities for Intelligent Systems 
Desirable capabilities include:  

• Capturing workflows and associated data and software, so that they can be automatically 
discovered, processed, repeated, and reused by others 

• (Largely) automated creation of metadata for new datasets as well as for legacy data 
would require new approaches for recognizing common types of data in geosciences and 
understanding what metadata are needed to answer different geoscience questions 

• Provenance management, so that provenance records can be searched and analyzed 

• Open publication of science products, which includes representing metadata for new data 
products including their associated workflows and all the software and data sources used 

• Reproducibility and reusability of data analytics processes 

• Recommender systems that link appropriate people, data, metadata, models, and 
workflows with context awareness 

• Trusted data, so that data can be evaluated based on its provenance, its quality, and its 
utility 
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3.5 Data Visualization	   

Geoscientists are visual thinkers and visualizations are key aids to understanding very 
complex phenomena.  Traditionally, visualizations are used to render the results of a model or 
data analysis process.  Instead, visualizations should be thoroughly embedded in all science 
interfaces, and advance approaches for visualizing data should include visualization of models 
and other relevant science contexts. 

3.5.1 Science Drivers 
Visualizations should be ubiquitous throughout the 

entire science process, from data collection and 
processing, through model building, to publication and 
presentation.  Interactive workspaces that would allow 
geoscientists to manipulate visualizations of data and 
models would offer different perspectives and improve 
their understanding of the underlying phenomena.  
Current practice is to use visualizations at the end of the 
process to show results, but facilitating the pervasive 
use of visualizations throughout intermediate stages of 
the process would be very beneficial.  One barrier is that generating visualizations is often 
difficult and time consuming. Intelligent assistance to create visualizations that are appropriate 
for given data or process would make them more ubiquitous and effective.  Automating the 
generation of visualizations using spatial or temporal references would enable scientists to get an 
integrated view of diverse information. 

Geoscientists typically create models and validate them with data, then iterate through this 
process to improve the models.  This process is currently not interactive, that is, it takes time to 
go from a refinement in the model to seeing its impact on the quality of the model.  Geoscientists 
would greatly benefit from interactive model building, refinement, and validation.  By 
interacting with models and data simultaneously, they would gain novel perspectives on 
comparing models, specifying knowns and unknowns, identifying model biases, and testing 
hypotheses.   

It may be hard for a geoscientist to figure out what visualizations to use, what strategy to 
follow to explore datasets, and how to combine visualizations with data analysis.  To assist 
scientists in exploring and processing data, interactive systems could provide guidance based on 
the steps in common scientific workflows.   

Finally, virtual reality interfaces are ideal for navigation of spatio-temporal information.  The 
advent of low-cost virtual reality devices can make these systems easier to come by.  More direct 
interaction with information and direct manipulation to get alternative perspectives can help a 
geoscientist gain a better understanding of physical phenomena. 

“Geoscientists are visual 
thinkers […], visualizations 
should be thoroughly 
embedded in all science 
interfaces, and go beyond 
visualization of data to 
include visualization of 
models and other relevant 
science context.” 
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3.5.2 Required Capabilities for Intelligent Systems 
Intelligent user interfaces and visualization systems must be designed to support geoscientists 

in understanding the complex phenomena they study.  The following capabilities would 
fundamentally change how scientists interact with data:  

• Visualization-centered workspaces that allow assist scientists to manipulate visualizations 
throughout the entire science process  

• Intelligent design of visualizations that can generate rich multi-dimensional or multi-scale 
visualizations that fit a given scientist’s problem  

• Automatic generation of visualizations grounded on spatial and temporal coordinates 
• Interactive modeling environments that integrate models with data, model parameters, 

model results, and hypothesis specifications 
• Intelligent workflow systems that can guide scientists to explore and analyze data 
• Low-cost virtual reality interfaces that allow scientists to explore 4D datasets routinely 

and interactively 

4. Geoscience Challenges Requiring Innovations in Intelligent Systems 

The challenges in geoscience research have been reviewed and described in several recent 
reports [NSF 2014; NRC 2014a; NRC 2014b; NRC 2013].  Geosciences encompasses and 
describes the vast scales of temporal and spatial systems of Earth. Concomitant with these scales 
come a notable diversity of data, knowledge, and scientific approaches.  Geoscience problems do 
not typically adhere to simple and symmetric models.  Earth systems phenomena are non-linear, 
heterogeneous, and highly dynamic. Geosciences research will also be challenged by extreme 
events and long-term shifts in Earth systems [NSF 2014].  In addition, recent unprecedented 
increases in data availability together with a stronger emphasis on societal drivers emphasize the 
need for research that crosses over traditional knowledge boundaries.  

This section reflects on geosciences challenges that could be tackled through new capabilities 
resulting from future innovations in intelligent systems.  We describe the needs and potential 
impact at several scales:  

 
• Site-level needs, where new research in intelligent sensors poses new opportunities, 

particularly in hard to access areas,  
• Regional-level needs, where efficient techniques are needed to integrate data from 

disparate locations, data types, and collection efforts within a wide area,  
• Global-level needs, where pattern recognition and analytical tools need to be applied 

to data and models to study wholistic phenomena of the Earth system, and  
• Layered needs, where interactive workspaces will accelerate research by supporting 

synthesis of information and knowledge across geosciences disciplines.  
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Figure 5.  Needs and potential impact at different scales at which significant new avenues of research 
in geosciences would be open through advances in intelligent systems, illustrated with case examples.  
From left to right: 1) site-scale, 2) local scale, 3) global scale, and 4) layered wholistic scale.   
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Figure 5 illustrates the challenges for each of these scales, which will be described in more 
detail in the rest of this section by presenting specific case instances followed by a discussion of 
how these challenges are actually common among geosciences sub-disciplines. 

4.1 Polar Sciences 
The rapid changes occurring in polar regions present the need to understand a broad range of 

complex processes and interactions. These processes and interactions span multiple domains and 
research communities, from oceanography and ecology to large-scale atmospheric modeling. 
Beyond the basic science needs, multiple stakeholder groups and participants bring further 
complexity by adding inherent connections to the social realm. Knowledge needs to be easily 
and quickly translated across multiple community boundaries without losing accuracy given the 
increasing speed and importance of decisions at the poles. Compounding the domain and 
stakeholder complexities, polar regions are vast, challenging, and expensive places to work. 
However, with recent advances in observational, logistical, and analytical technologies, polar 
and cryospheric sciences are quickly progressing. Polar research addresses many of the priorities 
identified across the geosciences. Major research frontiers in polar sciences include [NSF 2014]:  
 

• Understanding sea level rise, particularly changes related to melting and loss of major ice 
sheets 

• Predicting Arctic sea ice extent and thickness changes with impacts for shipping, 
geopolitics, and possibly storm patterns 

• Improving water resources considerations with understanding of seasonal patterns for 
important components of the cryosphere, such as snowpack 

• Modeling ice-ocean-atmosphere ecosystem interactions and processes 
• Assessing impacts of the changing Arctic environment on indigenous communities 

including but not limited to erosion prediction, permafrost degradation, and subsistence 
hunting 

4.1.1 Exemplifying Site-Level Needs: Forecasting Rates of Sea Level Change  
Polar scientists, along with atmospheric and ocean scientists, face an urgent need to 

understand sea level rise around the globe. To do this, sensing in remote or extreme locations can 
provide critical information about conditions and relationships across settings. For example, 
conditions along and under ice shelves are extremely challenging to observe but provide critical 
data to understand changes to the ice caps.  Yet ice shelf environments represent extreme 
environments for sampling and sensing. Current efforts to collect sensed data are limited and use 
tethered robots with traditional sampling frequency and collection limitations. New research on 
intelligent sensors would support selective data collection, on-board processing, and adaptive 
sensor steering. New submersible robotic platforms could detect and respond to interesting 
situations while adjusting sensing frequencies that could be triggered depending on the data 
being collected in real time.   
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With autonomous sensors, Polar geoscientists would be able to identify when the platform 
arrives at a transition zone and collect information that is key to understand what is happening 
under ice shelves.  The ability to collect extensive data about conditions at or near the ice shelves 
will inform our understanding about changes in ocean circulation patterns, as well as feedbacks 
with wind circulation. Achieving these outcomes requires advances in data collection to observe 
and characterize complex physical processes that combine turbulence, dispersion, diffusion, etc.  
This includes: 

• Robust sensor platforms to collect data in extreme and difficult environments 
• Automatic detection of interesting events 
• Real-time steering of sensors 
• Adapt sampling through dynamic reconfiguration 
• Integrated data collection and analysis 

 
The benefits of intelligent sensing would accrue rapidly on important issues, like 

understanding sea level rise processes and feedbacks, and would enable new geosciences 
research to characterize and quantify rates of change with data from transition zones across 
numerous geologic settings. 

4.2 Earth Sciences 
The Earth Science community focuses on understanding the dynamics of the Earth. Studies 

of the interior of the Earth, or deep Earth, include wide-ranging topics such as tectonics, 
seismology, magnetic or gravity fields, and volcanic activity. Studies of the near-surface Earth 
largely focus on the critical zone that is the constantly changing layer where rock, soil, water, air, 
and living organisms come into contact. It includes most of the hydrologic cycle, the carbon 
cycle, the food production cycle, and the energy cycle. 

All Earth Sciences research uses complex geological data to address a wide range of 
temporal and spatial scales, to characterize the complex three-dimensional geometry of some 
geological structures, and to make temporal inferences from spatial observations. Frequently, 
Earth Sciences inquiry involves geologic hazards or integrated problems related to risks and 
resources that are key to human systems and societal concerns.  Contemporary societal interests 
can include topics such as the formation of minerals or water resources central to modern life and 
the geologic events like earthquakes or volcanic activity. Examples of major research frontiers in 
Earth Science include [NSF 2014; NRC 2012; 2012a]:  
 

• Understanding when and why the Earth’s core formed and how the geo-dynamo 
originated 

• Understanding how the origin of life was constrained by the timing and nature of early 
Earth’s atmosphere, oceans, and tectonics 

• Predicting geohazards such as earthquake events and volcanic eruptions 
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• Modeling water cycle processes in relation to mass and energy transport with attention to 
rates, patterns, distribution, and impacts of human behavior  

• Enhancing societal resilience and decision making, particularly in relation to the 
availability of resources and the processes that influence or perturb dynamics in near 
surface systems, such as ecosystems, watersheds, coastal systems, and urban 
environments. 

4.2.1 Exemplifying Wide-Area Needs: Unlocking Deep Earth Time  
Earth Science opportunities are broad and deep. Earth Science researchers are frequently 

faced by data-sparse situations and problems. While collecting data from the field is done by 
individuals in select locations, the problems under consideration cover spatially vast regions of 
the planet. Moreover, scientists have been collecting data at different times in different places 
and reporting results in separate repositories and often unconnected publications.  This has 
resulted in a poorly connected collection of information that makes wide-area analyses extremely 
difficult and is impossible to reproduce.  

To unravel significant questions about topics, such as Deep Earth Time, geoscientists need 
mechanisms and tools to enhance the interconnections among previous and future studies. 
Effective data integration approaches can result in highly interlinked information ecosystems that 
would enable great advances in our understanding of Deep Earth Time. These information 
ecosystems would enable: 

 
• Rapid sharing and discovery for many sites and data types, using data collection and 

provenance annotations that enable integration of observations from the field directly 
into reusable information repositories 

• Intelligent curation support and knowledge representation to suggest interconnections 
among single-investigator data  

• Interactive mapping aides that identify and suggest geologic features and 
interpretations based on repositories of known relationships (e.g. geophysical, 
stratigraphic, paleoenvironmental) 

• Recommending potentially relevant data and information given the location and 
scientific goals of a study 

• Event and pattern detection in geo-referenced data to aid understanding of the signals 
and structural relationships that may explain how plate tectonics start 

• Tracing events from early planet formation using integrated field observations to 
characterize how tectonic processes work  

An integrated information ecosystem can support connections among scientists within and 
across disciplines (e.g. biology and geosciences data) to augment work that is site specific but 
also elevate research to broader and more generalized questions. 
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4.3 Atmospheric and Geospace Sciences 
Atmospheric and geospace science research aims to improve understanding of the Earth’s 

atmosphere and its interdependencies with all of the other Earth components, and to understand 
the important physical dynamics, relationships and coupling between the incident solar wind 
stream, and the magnetosphere, ionosphere and thermosphere of the Earth. Atmospheric research 
investigates phenomena operating from planetary to micro spatial scales and from millennia to 
microseconds.  

Atmospheric and geospace science research will benefit from developments in sensing 
including appropriate utilization of autonomous and unmanned sensor platforms, efficient 
utilization of crowd-sourced data, observing system design, inference methodology, sampling 
strategies, extracting structure and composition, data analytic tools, and in diagnosing and 
compensating for model error, in addition to interactive visualizations that enable data fusion and 
views of multi-dimensional information. Geospace sciences, as generally framed within the NSF 
programs, are focused on advancing our understanding of near-Earth space using two 
complementary research areas. First is the basic physical understanding of the geospace 
environment.  Second is understanding, predicting and mitigating negative impacts of space 
weather upon society. These two areas share many of the same research challenges and advances 
in understanding the geospace environment are requisite to understand implications of space 
weather. Researchers use observational, theoretical, computational, and laboratory capabilities to 
advance understanding of these dynamics, over the entire range of spatial (1000s of kilometers to 
centimeters)-temporal (years to micro-seconds) scales of interest, as well as over the entire range 
of geophysical conditions (solar cycle, seasons, time of day, magnetic activity). Because of the 
coupling between different physical systems, the external forcing and the spatio-temporal scales 
involved, geospace physics can benefit from intelligent systems research at every step along the 
chain of analysis, understanding, and construction of new knowledge about geospace science 
systems.   

Major research frontiers in atmospheric sciences and geospace sciences are driven by 
scientific goals [NRC 2013] that include:  

 
• Characterize the physics, chemistry, and dynamics of the earth's upper and lower 

atmosphere and its interactions with land-ocean-hydrosphere-ice systems 
• Understand the impact of climate processes and variations on diverse applications such as 

ecosystem productivity and biodiversity  
• Characterize natural and anthropogenically-perturbed local, regional and global cycles of 

gases and particles in the earth's atmosphere 
• Integrate improved observational and modeling capabilities across relevant temporal and 

spatial scales to address societally relevant issues that affect public safety and the 
national economy now and in the future. 

• Explore the processes that occur within the heliosphere 
• Understand the origins and variations of Sun activity with predictive capacity  
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• Build understanding of the Sun, Earth, and heliosphere as coupled systems  
• Expand knowledge of how the Sun interacts with the solar system and interstellar 

medium 

4.3.1 Exemplifying Global Needs: Predictive capacity for critical events 
Machine learning techniques have been applied in atmospheric and geospace research with 

great success (see Figure 1 for an example).   However, atmospheric and space sciences are 
tackling challenges that go beyond existing machine learning techniques.  There is a need for 
machine learning techniques that better account for nonlinearity and high dimensionality, and 
that are robust to non-Gaussian uncertainties for applications ranging from weather to climate 
scale phenomena.   

Although the data collected is very large, it is miniscule given the complexity of the 
phenomenon and existing machine learning techniques are not very effective.  New machine 
learning algorithms could augment the data available with knowledge about physical laws 
underlying the phenomena to generate effective models. Advanced nonlinear decomposition 
approaches could be used to define principal modes of transient or localized phenomena, from 
hurricanes to the El Niño Southern Oscillation. New techniques could aid in the diagnosis and 
correction of model error, and characterization of limitations of parameterization (e.g. convective 
parameterization).  The goal would be to reduce or eliminate error propagation or assure that 
uncertainty within derived measures is flagged and managed.  Machine learning advances are 
needed to assess long-term risk in a changing climate and plan mitigation strategies with robust 
uncertainty quantification methods. Similarly, geospace researchers would benefit from machine 
learning paired various workflows, such as intelligent sensing and sampling tools to recommend 
adequate sampling regimes, or assist with estimating state variables with active learning 
algorithms to assimilate and integrate heterogeneous measurements. To advance machine 
learning for atmospheric and geospace science applications will require: 
 

• Novel frameworks for combining and integrating models would advance atmospheric and 
geospace research, but present many research challenges in machine learning.    

• Bayesian inference of stochastic dynamical models would enable comparing 
scientific hypotheses and models in a rigorous fashion, and ranking and combining 
models or suggesting better models.   

• Frameworks for coupling models between different physical regions, scales and systems 
will enable the dynamical analysis of complex event patterns and phase transitions. 

4.4 Ocean Sciences 
The ocean programs strive to enable and support research across the physical, chemical, 

biological, and geological processes that operate throughout the global ocean [NSF 2014].  
Science priorities in ocean research are focused on understanding processes and responses 
related to sea level change, coastal and estuarine ecosystems, climate systems, marine resilience 
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and food webs, ocean basin formation, and characterization of geohazards and subseafloor 
environments [NSF 2014].  Major research frontiers in ocean sciences include: 

• Understanding coastal ecosystems: research is needed to model, quantify, and discover 
fundamental ecosystem functioning, including their interactions with oceanic flows, 
transports and mixing, and coastal aquifers 

• Predicting sea level variability: understanding the factors driving sea-level changes and 
predicting their impacts, both globally and regionally, as well as their association with 
melting and loss of ice sheets 

• Effects of land-ocean-atmospheric-ice interactions: research on the multi-scale and 
nonlinear interactions at varying time and space and scales that occur at the interface 

• Response to anthropogenic activity: effects in marine ecosystems of fisheries and other 
resource consumption, discharges, and coastal urbanization 

4.4.1 Exemplifying Layered Needs: Ocean-Land-Atmosphere-Ice Interactions 
The synthesis of models from vast amounts of multidisciplinary data in geosciences represent 

a culminating challenge to scientific research communities.  Current research practice has 
achieved significant advances, but approaches to tackle broader scales and work across 
disciplines will usher in a new era of geoscience inquiry.  This is the case with the analysis of the 
interactions between ocean, ice, atmosphere, and land phenomena. 

Global drivers and shifts in the rates of change and response in Earth systems are quickly 
outstripping our ability to translate lessons from the past into expectations for future behavior 
and response in Earth systems. Interactive workspaces are needed to support synthesis and 
integration of information and knowledge across research disciplines and sectors and they are 
part of the transition towards interactive and collaborative science.  This includes: 

 
• Interactive exploration of interlinked data, models, and context 
• Collaborative workflows for joint exploration and coupling of separate models, 

phenomena, regions, and events 
• Automated generation of visualizations 
• Low-cost virtual reality environments and visualization-centered workspaces to integrate 

models. 
 

These capabilities will enable ocean sciences research directed towards identifying global 
drivers in ocean biogeochemical and physical processes, and their interactions with other 
processes, to understand shifts and rates of change.  

4.5 Enabling Wholistic Research on the Earth as a System 

The pace of geosciences investigations today can hardly keep up with the urgency presented 
by societal needs to manage natural resources, respond to geohazards, and understand the long-t
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erm effects of human activities on the planet.  Studying the Earth as a system requires scaling up 
our ability to collect data where and when it matters, to integrate isolated observations into 
broader studies, to create models in the absence of comprehensive data, and to synthesize models 
from multiple disciplines and scales.  Advances in intelligent systems to develop more robust 
sensor platforms, more effective information integration, more capable machine learning 
algorithms, and intelligent interactive environments have the potential to significantly transform 
geosciences research practices and expand the nature of the problems under study. 
Collaborations between intelligent systems and geoscience researchers can be logically 
organized at various scales as shown in Figure 6 as follows:  

 
 

             

 

Figure 6.  Significant new avenues of research in geosciences would be open through advances in 
intelligent systems through: 1) model-driven sensors that collect data selectively at hard to access 
locations in optimal patterns; 2) information ecosystems that integrate data from many locations and 
types to enable detection of interlinked phenomena; 3) theory-driven learning to supplement limited 
data with knowledge about physical laws; 4) interactive workspaces that enable geoscientists to 
synthesize diverse models and explore more wholistic scenarios across many layers of information at 
diverse scales.  
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Table 1. An overview of new capabilities for geosciences research that would result from 
innovations in intelligent systems. 

Capabilities 
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Exploit sensing and sampling tools to collect data more frequently at 
hard to reach sites 

✓ ✓  ✓  ✓   

Enable adaptive collection rates and interleave processing methods 
based on predictive dynamics 

✓ ✓  ✓  ✓   

Design of optimal sampling strategies for high value data collection at 
critical locations and phenomena 

✓ ✓   ✓   

Synthesis of diverse subjective single-investigator observations and 
interpretations based on field data 

✓   ✓  ✓  ✓  

Interactive mapping aides that identify and suggest geologic features 
and interpretations based on repositories of known relationships (e.g. 
geophysical, stratigraphic, paleoenvironmental) 

✓   ✓  ✓  ✓  

Machine learning algorithms for dynamic non-linear processes, 
sensitivity analysis, adaptive estimation 

✓    ✓   

Explore remote field sites in virtual and augmented reality 
environments, creating digital field access 

✓  ✓  ✓   ✓  

Interactive exploration of coupling of different physical regions, 
scales and systems with visualizations representing high 
dimensionality information (e.g. 4D or more)  

✓ ✓  ✓  ✓  ✓  

Adaptive computational methods and systems that evolve based on 
the dynamics and measurements collected, using continuous updates 
to resolution and models 

✓ ✓  ✓  ✓  ✓  

Optimal sensing with collaborative swarms of heterogeneous 
autonomous platforms (e.g., AUVs, gliders, ships, moorings, remote 
sensing) with context knowledge about environment, uncertainties, 
and implications for sensing tasks 

✓ ✓  ✓  ✓  ✓  

Scientific support systems to compare hypotheses, understand 
complex data and models, provide model ranking, or suggesting 
better models 

✓  ✓  ✓  ✓  

Automated and interactive visualizations of multivariate datasets, 
assisted discovery and extraction of complex features, understanding 
of uncertainties and probability density functions 

✓  ✓  ✓  ✓  

Characterization of uncertainties, assessment of uncertainty sources 
and propagation 

✓  ✓ ✓ ✓ 
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• Model-driven sensing: to support data collection in extreme or remote environments, 
difficult to monitor conditions, or phenomena with limited observability.  Optimization 
strategies for data collection and adaptive sampling regimes would result in data of 
maximal utility to scientists.  

• Information Ecosystems: to support data and model integration across different 
repositories across disciplines. Improved information discovery capabilities would further 
inform systems-level inquiry and leverage previous research particularly to support 
information aggregation through georeferenced and curated datasets and integration 
across scales. 

• Theory-driven learning: to support geoscience researchers working on generating models 
from datasets that are large and yet insufficient due to their high dimensionality or multi-
scale nature, so they need to be combined with theories about physical laws and other 
geosciences knowledge.  In addition, new machine learning methods would be needed to 
study hard to observe or extreme events. 

• Interactive Workspaces: to support exploration and hypothesis development, enabling 
researchers to better understand not just their own areas of specialization but expand into 
larger integrated models of the evolving Earth system. Such frameworks would also 
facilitate the dynamic tracking and discovery of new research communities that are 
producing data or models pertaining to a common problem or geological time interval. 
Layered needs, where interactive workspaces will accelerate research by supporting 
synthesis and integration of information and knowledge across research disciplines and 
sectors. 

Table 1 summarizes major aspects of the above capabilities, together with an indication of 
the major areas of intelligent systems where we anticipate that research advances will be 
required. 

5. A Roadmap for Intelligent Systems Research with Benefits to Geosciences 

With the unprecedented increase in observational and model data being collected about 
physical processes on the Earth, geosciences is rapidly transcending from a small data to a big 
data era. This has been made possible through advancements in data collection technologies and 
through growing access to computing resources. The growing availability of Earth system data 
offers an immense opportunity for intelligent systems research to accelerate advancements in 
geosciences and vice versa. 

The promise of intelligent systems research for geosciences is heightened by the recent 
success of traditional intelligent systems methods in several commercial domains involving 
massive datasets, such as product recommenders and advertising. However, geoscience datasets 
exhibit a variety of unique characteristics that differentiate them from big datasets in commercial 
domains. These are summarized in Figure 7.  Geoscience datasets are immensely heterogeneous, 
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are usually spatio-temporal, and the phenomena or objects of interest do not have crisp 
boundaries. For example, ocean eddies and hurricanes have amorphous spatio-temporal 
boundaries that appear as patterns in continuous variables, such as the sea surface height. 
Geoscience datasets capture information about both well-known and little understood physical 
processes and relationships, which show varying characteristics in different regions of the world 
due to differences in geographies, climatic conditions, seasonal cycles etc. Even the relatively 
homogeneous ‘big data’ from remote sensing suffer from a high degree of uncertainty, 
incompleteness, and lack of comprehensive tools for easy use. These characteristics restrict the 
immediate application of existing intelligent systems approaches in geosciences, as they have 
been traditionally developed for relatively noise-free datasets. An additional challenge in the use 
of traditional intelligent systems approaches is the small sample-size problem that appears 
frequently in geoscience applications, due to the paucity of reliable ground truth or the 
unavailability of observations, e.g. in paleo-climate studies. This problem is especially severe 
when the geophysical phenomena are complex and non-linear, requiring large sample sizes for 
significance testing. Additionally, geoscience data are frequently collected to find or better 
understand a natural phenomena or relationship; the resulting data are observations, but it isn’t 
always clear what those observations reveal. The geosciences are sciences of discovery, which 
means requirements, rules, and relationships among different systems are constantly changing. 

       

              

Figure 7.  Geoscience data exhibits a variety of differentiating and challenging characteristics that 
require new research to extend the traditional intelligent systems approaches that are successfully used 
in commercial domains involving massive datasets.  
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Geosciences algorithms, workflows, and standards are an inherently moving target, adding the 
need for ongoing technical change as well. 

Another fundamental property that differentiates geosciences from commercial domains 
where ‘big data’ approaches have been used with great success is the fact that geoscience 
processes are strongly guided by scientific principles. These scientific principles, available in the 
form of domain knowledge, can guide the process of knowledge discovery from geoscience 
datasets. For example, encapsulating knowledge about the physical processes governing Earth 
system datasets can help constrain the learning of complex non-linear relationships in geoscience 
applications, ensuring theoretically consistent results. What is needed is an approach that 
leverages the advances in data-driven research yet constrains both the methods and the 
interpretation of the results through scientific principles that govern the domain. 

In order to address geosciences challenges involving complex multi-scale, multi-process 
phenomena, scientists will need intelligent systems incorporating cutting edge technology and 
the scientist’s expertise, context, and experiences.  Intelligent systems need to incorporate 
process-centered geoscience knowledge about phenomena that combine physical, geological, 
chemical, biological, ecological, and anthropomorphic factors. This will result in a new 
generation of knowledge-rich intelligent systems enabling novel forms of reasoning and learning 
about geosciences data. 

Figure 8 shows an example of representations of physical processes can guide machine 
learning (from [Che et al 2015]).  In this example, a multilayer neural network was constructed 

 

Figure 8.  An example of how geoscience processes could be represented and augmented to improve 
machine learning methods [Che et al 2015]. A miniature illustration of a deep network with the 
regularization on predicted labels in geo-applications through a Laplacian prior constructed (a) based 
on physical processes and (b) based on the location adjacency matrix. The regularization is applied to 
the output layer of the network so that the physical processes that are highly correlated with each other 
or the locations adjacent to each other can share similar latent layers. Incorporating this knowledge 
about physical processes into the machine learning models results in better prediction performance (at 
least 3-5% improvement), especially when the amount of observation data is limited or when there are 
many missing observations. 
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with a Laplacian regularizer. The Laplacian regularizer is constructed from the adjacency 
matrices based on the similarity between physical processes or location adjacency. In this way, 
the neural networks can automatically learn the appropriate weights so that the physical 
processes that are highly correlated with each other or the locations adjacent to each other can 
share similar latent layers.   

These “geoscience-aware intelligent systems” pose novel problems for intelligent systems 
researchers.  Workshop participants converged on five major research areas: 

1. Knowledge Representation: Capturing scientific knowledge in the form of geoscience 
processes (physical, geological, chemical, biological, and ecological and 
anthropomorphic) will push the limits of the state of the art.  

2. Sensing and Robotics: Scientific knowledge should be used to guide what data needs to 
be prioritized and collected.  

 

 

Figure 9.  Major areas for intelligent systems research that could have major impact in geosciences.  
New knowledge representations could capture scientific knowledge that could be used for sensors and 
robotics, information integration, machine learning, and intelligent user interfaces. 
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3. Information Integration: Geosciences processes need to be represented in a “geophysical 
system of systems” where all data and knowledge are interconnected.  

4. Machine Learning: Algorithms need to be enriched with models of the relevant 
geoscience processes.  

5. Interfaces and Interactive Systems: Knowledge-rich user models should provide context 
for the interactions.  

All these areas cannot be investigated separately as they are interdependent.  For example, 
improvements in sensing will facilitate learning, richer representations will facilitate information 
integration, and knowledge-guided learning algorithms will lead to better interfaces.  

Figure 9 shows an overview of the major research areas presented in the rest of this section. 

5.1 Knowledge Representation and Capture 

In order to create geoscience-aware intelligent systems, scientific knowledge relevant to 
those geoscience processes must be explicitly represented, captured, and shared. 

5.1.1 Research Directions 
 

Representing Scientific Metadata.  Geoscientists are collecting more data than ever before, but 
raw data sitting on isolated servers is of little utility.  Recent work on semantic and Linked Open 
Data standards enables publishing datasets in Web standard formats with open access licenses, 
and describing their semantics with metadata that maps the data to an ontology that describes 
domain concepts. They also enable creating links among datasets to further interoperability. 
While semantics, ontological representations, scientifically accurate concept mappings across 
domains, and the application of Linked Open Data are all areas of active research in the data 
curation and informatics communities, these techniques have the potential to improve open data 
reuse and access. Progress in data curation, data management, informatics, and 
cyberinfrastructure will open the door to new approaches for automatically integrating data 
across sources and perform analysis on the data without a great deal of manual effort. Also 
needed are new techniques to automatically infer semantic structure from raw data that can be 
used to integrate, analyze, and visualize large datasets. Novel techniques that map across 
information spaces will enable linking across research disciplines.  
 
Capturing Scientific Knowledge.  An even greater challenge is representing the ever-evolving, 
uncertain, complex, and dynamic aspects of scientific knowledge and information. While 
ontologies are growing in use to state basic relations between objects, existing ontologies need to 
be extended to represent geoscience processes with buy-in from many diverse communities and 
capabilities of documenting, versioning, and representing various forms, such as spatio-temporal 
processes interacting with each other and multi-scale phenomena. These representations can be 
broadly linked to existing data and ontological concepts with actionable authority. Important 
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challenges will arise in representing mathematical concepts, dynamic processes, uncertainty, and 
other aspects of a constantly growing scientific knowledgebase.  These representations need to 
be expressive enough to capture complex scientific knowledge, but they also need to support 
scalable reasoning that integrates disparate knowledge at different scales, and scientists need to 
understand the representations enough to trust the outcomes.  

 
Interoperation of Diverse Scientific Knowledge.  Scientific knowledge comes in many forms 
that use different tacit and explicit representations: hypotheses, models, theories, equations, 
assumptions, data characterizations, etc. Certainly, the scientists themselves construct and 
encode the various representations and forms to disseminate understanding.  All these different 
perspectives come together with personal expertise to allow scientists to analyze different aspects 
of complex phenomena. However, these representations are all interrelated, and it should be 
possible to translate knowledge fluidly as needed from one representation to another. A major 
research challenge is the seamless interoperation of alternative representations of scientific 
knowledge, from descriptive to taxonomic to mathematical, from facts to interpretation and 
alternative hypotheses, from small to larger scale, and from isolated processes to complex 
integrated phenomena. 

 
Authoring Scientific Knowledge Collaboratively.  Formal knowledge representation 
languages, especially if they are expressive and complex, are not easily accessible to scientists 
for encoding understanding.  A major challenge will be creating authoring tools that enable 
scientists to create, interlink, reuse, and disseminate knowledge about geoscience processes.  
Scientific knowledge needs to be updated continuously, allow for alternative models, and 
separate facts from interpretation and hypotheses.  These are new challenges for knowledge 
capture and authoring research.  Finally, scientific knowledge often needs to be created 
collaboratively, allowing different contributors to weigh in based on their diverse expertise and 
perspectives.  
 
Automated Extraction of Scientific Knowledge.  Not all scientific knowledge needs to be 
authored manually.  Much of the data known to geoscientists is stored in semi-structured 
formats, such as spreadsheets or text, and is inaccessible to structured search mechanisms. 
Automated techniques are needed to make use of this vast store of existing knowledge by 
identifying and importing the data into structured knowledge bases. This will involve the 
development of geoscience-aware semantic and natural language analysis approaches.  Another 
important research thread is the application of techniques from machine learning towards the 
problem of generating metadata from both large and small datasets. With these types of tools, 
scientists will be able to focus more time and attention on discovery from data, and less on data 
discovery. 
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5.1.2 Research Vision: Knowledge Maps 
We envision rich knowledge graphs that contain explicit interconnected representations of 

scientific knowledge linked to physical time and space.  These would form knowledge maps in 
five dimensions (3D + time + knowledge annotations).  Interpretations and assumptions will be 
well documented and linked to observational data and models.  Today’s semantic networks and 
knowledge graphs link together distributed facts on the Web (eg, Wikidata11), but they contain 
simple facts that lack the depth and grounding needed for scientific research.  Knowledge maps 
will have deeper representations about spatio-temporal processes and will be grounded in the 
physical world, interconnecting the myriad models of geoscience systems.   

5.2 Robotics and Sensing 

Data collection is a ubiquitous task across the geosciences.  Through intelligent sensing and 
knowledge-informed data collection, sensing and robotics research has great potential to impact 
the geosciences. 

5.2.1 Research Directions 
 
Optimizing Data Collection.  Geoscience data is needed across many scales, both spatial and 
temporal.  Since it is not possible to monitor every measurement at all scales all of the time, there 
is a crucial need for intelligent methods of sensing.  New research is needed to estimate the cost 
of data collection prior to sensor deployment, whether that means storage size, energy 
expenditure, or monetary cost.  A related research challenge is the tradeoff analysis between the 
cost of data collection versus the utility of the data to be collected.  Since the cost of collecting as 
much data as possible is impractically high, optimization theory and statistical experimental 
design approaches are particularly relevant to facilitate obtaining the most amount of information 
using the least amount of data at the minimum cost without compromising the needs for 
appropriate bounds on uncertainty. 
 
Unanticipated Uses of Collected Data.  A potential challenge for adaptive sensing informed by 
a specific physical process is in the reuse of data in applications dissimilar to that of original 
intent during data collection. Geoscience systems involve highly heterogeneous processes and 
data, which each play a role in modeling phenomena.  A major research challenge is to collect 
data in a way that facilitates its use for unanticipated purposes.  Additionally, the need to 
explicitly express the limits of collected data is crucial to the integrity of the data set.   

 
Active Sampling. Geoscience knowledge can be exploited to inform autonomous sensing 
systems to not only enable long-term data collection, but to also increase the effectiveness of 

                                                
11 http://www.wikidata.org 
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sensing through adaptive sampling, resulting in richer data sets at lower costs.  In the 
oceanographic community, hybrid autonomous underwater vehicle-gliders have the potential to 
extend vehicle endurance by combining active thrust and buoyancy. In an adaptive sensing 
scheme, autonomous vehicles with an embedded decision architecture assimilate data to generate 
and continuously update an environmental model that is guided by geoscience knowledge to 
provide prior predictions and estimations to the sensing system. Interpreting sensor data onboard 
allows vehicles to make decisions guided by real-time variations in data, or to react to 
unexpected deviations from the current physical model.  For example, an AUV could assess the 
dynamics of observations to track patterns in the environment such as plumes of chemicals or oil 
spills.  Active sampling methods require real-time validation, verification, and calibration of 
incoming data through analysis and reanalysis of observations to assess alignment with expected 
physical models, in order to make decisions that inform or adapt the sampling heuristic of an 
active sampling platform.  This leads to models that are not only physically-derived or data-
driven, but a combination of both. 

 
Crowdsourcing Data Collection.  Another means of gathering large volumes of data required 
by the geosciences is through crowdsourcing.  Citizen scientists can contribute useful data (e.g., 
collected through geolocated mobile devices) that would otherwise be very costly to acquire.  
One challenge in data collection through crowdsourcing is in ensuring high quality of data 
required by geoscience research. A potential opportunity for intelligent systems in the 
geosciences is to develop improved methods of evaluating crowdsourced data collection 
empirically, and to gain an understanding of the biases involved in the collection process. 

 
Virtual Sensing.  One form of virtual data collection may be through real-time navigation 
through a virtual model of the area to be observed, to allow measurements to be taken remotely.  
Already existing repositories could be better leveraged through virtual reality and augmented 
reality user interfaces to enable “virtual data collection” by navigating and selecting data of 
interest.  One mode of virtual reality data collection would be a visualization of available 
datasets, exploiting a highly interactive virtual reality platform to sort through available data. 
User queries and filtering mechanisms would need to be better integrated with navigation and 
visualizations. 

5.2.2 Research Vision: Model-Driven Sensing 
New research on sensors will create a new generation of devices that will contain more 

knowledge of the scientific context for the data being collected, they will use that knowledge to 
optimize their performance and improve their effectiveness in modeling the phenomena being 
studied.  This will result new model-driven sensors that will have more autonomy and 
exploratory capabilities. 
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5.3 Information Integration 

Data, models, information, and knowledge are scattered across different communities and 
disciplines, causing great limitations to current geosciences research.  Their integration presents 
major research challenges that will require the use of scientific knowledge for information 
integration. 

5.3.1 Research Directions 
 
Integrating Distributed Repositories of Scientific Knowledge.  The geosciences have 
phenomenal data integration challenges.  One aspect of this is the inherently interdisciplinary 
nature of the fields. Most of the hard geoscience problems require that scientists work across 
sub-disciplinary boundaries, especially considering the increasing specialization of experts. 
Another facet of this issue is the sheer volume of data needed to accurately model phenomena in 
this domain. For instance, modern climate models leverage data collected on 1° grids. This 
results in a petabyte of data. It is no longer practical for each researcher to have her own local 
copy of all the data she needs to analyze. It is clear that developing tools and techniques for 
integrating, maintaining, and searching distributed repositories is critical for future progress. This 
will present enormous challenges. Geoscience data spans a wide variety of modalities and has 
greatly varying temporal and spatial scales. Research into how to appropriately represent and 
merge this data has already started. The cyberinfrastructure community is increasingly moving 
towards a distributed, decentralized, interconnected model for moving forward. Distributed data 
discovery tools, shared metadata records, metadata translators, and more appropriate and 
descriptive standards are emerging in this context. Open issues include: 1) Representing data 
using modeling concepts that are familiar and useful to domain experts and accurately translate 
across different domain experts, 2) Entity resolution and scientifically valid data linking, 3) 
Reward structures to encourage researchers to deposit their data with full and rich metadata and 
documentation, 4) Development of intelligent user interfaces to facilitate creation, search, and 
curation of geoscience data using the sematic web and other frameworks. 
 
Threading Scientific Information and Resources. Scientific information and digital resources 
(data, software, workflows, papers, etc) should be interconnected and interrelated, enabling a 
rich threaded environment for science to occur.  Research challenges include developing new 
knowledge networks that accurately and usefully link together people, data, models, and 
workflows. This research will be able to extend understanding of Earth science information 
interoperability and composition, and deepen our understanding of how collaborative expertise 
and shared conceptual models develop.  
 
Knowledge-Rich Context-Aware Recommender Systems.  Scientists would benefit from 
proactive systems that understand the task at hand and make recommendations for potential next 
steps, selection of datasets and analytical methods, and intelligent design of perceptually 
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effective visualizations. A major research challenge is to design recommender systems that 
appropriately take into account the complex science context of the geoscientist’s investigation. 
Another research challenge for recommender systems is to carry out dynamic analyses of the 
interrelationships between the contexts of artifacts and scientists, and anticipate what elements 
will be relevant to the scientist before they even think of asking for them.  Context for an artifact 
encompasses the environments within which the artifact can execute; context for a scientist 
describes the situated development environment.  For example, a module that requires certain 
types of data for the best results can be suggested to a geoscientist when they are depositing that 
kind of data into a repository.  

Scientific Discovery Processes and Provenance.  Capturing complex data analysis processes as 
workflows facilitates reuse, scalable execution, and reproducibility. When these workflows are 
augmented with expert-grade rules to select and customize analyses for any given dataset, 
automation and validation become possible. The pace of research could be significantly 
accelerated by these intelligent workflow systems running on data repositories, and automating 
routine aspects of data analysis. Another research challenge is the analysis and comparison of 
large volumes of data from different experiments through automated workflows would facilitate 
progress on defining the bounds of reproducibility caused by the natural variability of boundary 
conditions that is frequently evident in geoscience fields.  A major area of research is 
collaborative science, particularly supporting real-time co-design of data analysis processes, the 
ability to track how a workflow evolves over time based on changing designs contributed by 
multiple researchers, and the capability to capture and retrieve collaboration knowledge on 
workflow design, such as the discussions that lead to a particular design.  
 
Provenance and trust.  Incoming data to the integration process has to be analyzed for its fit 
and trustworthiness.  The original sources must be documented, as well as the integration 
processes, in order for the information to be understood and trusted. The challenges are in 
developing appropriate models, and automating provenance/metadata generation throughout the 
integration process. Although there are standard models to represent provenance, they need to be 
augmented with geoscience-specific methodologies and scientific discovery processes.   These 
representations need to support guided and natural interaction with scientists, and at the same 
time enable automated capture of geoscience-relevant provenance records. 
 
Integrating Data From the Published Literature.    Published literature is seeing a renaissance 
as a source of observations particularly as machine learning, text mining and natural language 
processing tools improve to where they can reliably extract scientific evidence from scanned 
articles. This information is contained not only in text, but also in tables of data; images of 
objects; and graphics.  Important research challenges in this area include improving the quality 
of information extraction systems, minimizing the effort required to set up and train these 
systems, and making them scalable through the vast amounts of the published record.  Another 
area of research is geo-referencing extracted facts, mapping entities that appear with different 
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labels (e.g., “United States” vs “USA”), and the integration of the information extracted with 
existing datasets. 

5.3.2 Research Vision: Trusted Science Threads 
The culmination of the proposed bi-directional, collaborative research program could result 

in a scientifically accurate, useful, and trusted landscape of data, models, information, and 
knowledge.  The byproduct of scientific discovery includes integrated broad-scale data products 
derived from raw measurements. These products are described to explain the derivations and 
assumptions to increase understanding and trust of other scientists. These trusted science threads 
will be easily navigated, queried, and visualized. 

5.4 Machine Learning 

New machine learning approaches that incorporate scientific knowledge will be needed in 
order to address the challenges of analyzing sparse geosciences data and the complexity of the 
phenomena under study. In contrast to machine learning that is rooted in data-science the need 
here is for learning in the context of dynamic, adaptive integration of data and models, so that 
inferences can be obtained better than from either source alone. Thus, for example, in contrast to 
solving difficult extreme-value problems purely statistically, one can embody physics within the 
sampling process, and in contrast to using a purely numerical approach to forecasting one can 
integrate data-driven models within this process. Such integrated thinking is not just within the 
realm of machine learning per se but applies more generally to the development of computational 
intelligence for geosciences.  

5.4.1 Research Directions 
 
Incorporation of Geoscience Knowledge into Machine Learning Algorithms.  Geoscience 
processes are very complex and high dimensional, and the sample size of the data is typically 
small given the space of possible observations.  For those reasons, current machine learning 
methods are not very effective for many geoscience problems.  A promising approach is to 
supplement the data with knowledge of the dominant geoscience processes.  Examples from 
current work include the use of graphical models, the incorporation of priors, and the application 
of regularizers.  Novel research is needed to develop new machine learning approaches that 
incorporate knowledge about geoscience processes and use it effectively to supplement the small 
sample size of the data.  Prior knowledge reduces model complexity and makes it possible to 
learn from smaller amounts of data.  Incorporating geoscience process knowledge can also 
address the high dimensionality that is typical of geoscience data.  Prior knowledge constrains 
the possible relationships among the variables, reducing the complexity of the learning task. 

Combining Machine Learning and Simulation Approaches.  Machine learning offers data-
driven methods to derive models from observational data. In contrast, geoscientists often use 
simulation models that are built. Process-based simulation approaches impose conservation 
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principals such as conservations of mass, energy, and momentum.  Each approach has different 
advantages.  Data-driven models are generally easier to develop. Process-based simulation 
models arguably provide reasonable prediction results for situations not represented in the model 
calibration period, while data-driven models are thought to be unable to extrapolate as well. Yet 
difficulties in the development of process-based simulation models, such as parameterization and 
the paucity of clear test results, can draw this claim into question. Intelligent Systems hold the 
promise of producing the evaluations needed to make the complex approaches used in data-
driven and process-model simulation approaches more transparent and refutable. Such efforts 
will help to use these methods more effectively and efficiently. Novel approaches are needed that 
combine the advantages of machine learning and simulation models. 

Modeling of Extreme Values.  There are important problems in geosciences that are concerned 
with extreme events, such as understanding extremely high temperature or extremely low 
precipitation.  However, existing simulation models are very sensitive to extreme values and 
therefore the results are not reliable. The heavy-tail property of the extreme value poses 
important challenges to machine learning algorithms.  A major challenge is presented by the 
spatial-temporal nature of the data. 

Evaluation Methodologies.  Machine learning evaluation methodology relies heavily on gold 
standards and benchmark dataset with ground-truth labels.  In geosciences, there are no gold 
standard datasets for many problems.   It is unclear how to demonstrate the value of machine 
learning models.   One possible approach is doing reanalysis, which involves making predictions, 
then collecting observations, and then adjusting the models. Holding data mining competitions 
using such data would be a very effective attractor for the machine learning community.  A 
possible source of data could be the five standard datasets for climate reanalysis (era40, ncep, 
etc).  We also encourage the creation of training datasets from simulations.  Training datasets 
could be generated that would mimic real data but also have ground truth available, providing 
opportunity to rigorously train, test and evaluate machine learning algorithms.  

Causal Discovery and Inference for Large-Scale Applications. Many geo-science problems 
involve fundamental questions around causal inference. For example, what are the causes of 
more frequent occurrences of heat waves?  What could be the causes for the change of ocean 
salinity?  There has been a series of recent breakthroughs in causal analysis by machine learning 
researchers, using methods such as generalization analysis of causal inference, causal inference 
in presence of hidden components, domain adaption and subsample data, Granger graphical 
models and causal discovery with probabilistic graphical models. These advances have lead to 
high efficiency algorithms that can handle large numbers of variables, deal with hidden common 
causes and incorporate prior knowledge (e.g. expert knowledge).  While it is not possible to 
prove causal connections, it is possible to generate new (likely) hypotheses for causal 
connections that can be tested by a domain expert. These breakthroughs have lead to great 
advances in bioinformatics in recent years, but they are only just emerging in the geosciences. 
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Given the large amount of data available, we are in a unique position to use these advances to 
answer fundamental questions around causal inference in the geosciences. 

Novel Applications of Advanced Machine Learning Methods to Geosciences.  A wide range 
of advanced machine learning methods could be effectively applied to geoscience problems.  
This could not only produce novel results in geosciences, but also could result in new challenges 
for machine learning.  Some examples include: 1) change detection algorithms could be applied 
to urban growth and landscape evolution problems, 2) ensemble methods could reduce climate 
model errors, and 3) pattern mining to monitor ocean eddies.  Machine learning methods have 
already shown great potential in a specific geoscience application, but significant research 
challenges remain in order for those methods to be widely - and easily - applicable for other 
areas of geoscience.    

Active Learning, Adaptive Sampling, and Adaptive Observations. Many geoscience 
applications involve learning highly-complex nonlinear models from data, which usually 
requires large amounts of labeled data. However, in most cases, obtaining labels can be 
extremely costly and demand significant effort from domain experts, costly experiments, or long 
time periods. Therefore, a significant research challenge is to effectively utilize a limited labeling 
effort for better prediction models. In machine learning, this area of research is known as active 
learning. Many relevant active sampling algorithms, such as clustering-based active learning, 
have been developed. New challenges emerge when existing active learning algorithms are 
applied in geosciences, due to issues such as high dimensionality, extreme events and missing 
data. In addition, in some cases, we may have abundant labeled data for some sites while being 
interested in building models for other locations (e.g., remote areas).  Transfer active learning 
aims to solve the problem. It develops new active learning algorithms that can significant reduce 
the number of labeling requests and build an effective model by transferring the knowledge from 
areas with large amount of labeled data. The research on transfer active learning is still at early 
stage and many opportunities exist for novel machine learning research, and in particular to 
address geoscience challenges. 

Interpretive models.  In the past few decades, we have witnessed many successes of powerful 
but complex machine learning algorithms, exemplified by the recent peak of deep learning 
models. They are usually treated as a black box in practical applications, but have been accepted 
by more and more communities given the rise of big data and their modeling power. However, in 
applications such as geosciences, we are interested in both predictive modeling and scientific 
understanding which requires explanatory and interpretive modeling. A significant research area 
for machine learning is the incorporation of domain knowledge and causal inference to enable 
the design of interpretive machine learning approaches. This gives rise to new machine learning 
frontiers, such as (1) providing fundamental insights into complex approaches, for example to 
understand how and why deep learning works; and (2) designing surrogate models composed by 
simple interpretive algorithms to approximate the behaviors of complex uninterpretable models. 



 49 

5.4.2 Research Vision: Theory-Guided Learning 
Geosciences data presents new challenges to machine learning approaches due to the small 

sample sizes relative to the complexity and non-linearity of the phenomena under study, the lack 
of ground truth, and the high degree of noise and uncertainty.  New machine learning algorithms 
will have to be developed to address these challenges by incorporating scientific knowledge.  
These new algorithms will result in a new research agenda of theory-guided learning, where 
knowledge about underlying geosciences processes will guide the machine learning algorithms 
in understanding complex phenomena. 

5.5 Intelligent User Interaction 

Scientific research requires well integrated user interfaces where data can easily flow from 
one to another, and that include and exploit the user’s context to guide the interaction.  New 
forms of interaction, including virtual reality and haptic interfaces, should be explored to 
facilitate understanding and synthesis. 

5.5.1 Research Directions 
 

Embedding Visualizations Throughout the Science Process. Visualizations can be graphical, 
cartographic, temporal, static, dynamic, and interactive. All types of visualization are useful in 
geoscience studies, yet visualization remains severely underutilized by the Earth science 
community. Pervasive use of visualizations and direct manipulation interfaces would allow 
scientists to experience data and models from completely new perspectives.  These visualization-
based interactive systems require research on the design and validation of novel interactive 
visual representations that effectively integrate the diverse forms of data associated with 
Geosciences.  These include physically oriented data such as spatio-temporal data, multi-spectral 
data, and multi-scale data; and abstract forms of information including models, analytical results, 
hypotheses, provenance, uncertainty, and annotations.  

Intelligent Design of Rich Interactive Visualizations.  In order to be more ubiquitous 
throughout the research process, visualizations must be automatically generated and be 
interactive.  One research challenge is to design visualizations that integrate diverse data in 2D, 
3D, multi-dimensional, multi-scale, and multi-spectral views.  Another challenge is the design of 
visualizations that fit the scientist’s problem.  An important area of future research is the 
interactive visualizations and direct manipulation interfaces would enable scientists to explore 
data and gain a better understanding of the underlying phenomena.  

Immersive Visualizations and Virtual Reality.  There are new opportunities for low-cost 
usable immersive visualizations and physical interaction techniques that virtually put 
geoscientists into the physical space under investigation, while also providing access to other 
related forms of data.  This research agenda requires bridging prior distinctions in scientific 
visualization, information visualization, and immersive virtual environments. 
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Interactive Model Building and Refinement through Visualizations that Combine Models 
and Data.  Interactive environments for model building and refinement would enable scientists 
to gain improved understanding on how models are affected by changes in initial data and 
assumptions, how model changes affect results, and how data availability affects model 
calibration.  Developing such interactive modeling environments require visualizations that 
integrate data with models, ensembles of models, model parameters, model results, and 
hypothesis specifications.  These integrated environments would be particularly useful for 
developing machine learning approaches to geosciences problems, for example in assisting with 
parameter tuning and selecting training data.  A major challenge is the heterogeneity of these 
different kinds of information that needs to be represented.  The complexity of the models and 
the model refinement process will also present challenges to the design of interfaces that can 
guide users through the process.  A novel area of research would be interactive systems to 
support bidirectional workflows that would enable reverse reasoning, such as fixing algorithm 
outcomes in causality or sensitivity analyses to identify acceptable model parameters. 

Interfaces for Spatio-Temporal Information.  The vast majority of geosciences research is 
geospatially localized and with temporal references.  Geospatial information requires specialized 
interfaces and data management approaches.   New research is needed in intelligent interfaces for 
spatio-temporal information that exploit the user’s context and goals to identify implicit location, 
to disambiguate textual location specification, or to decide what subset of information to present.  
The small form factor of mobile devices is also constraint in developing applications that involve 
spatial data. 

Collaboration and Assistance for Data Analysis and Scientific Discovery Processes.  
Intelligent workflow systems could help scientists by automating routine aspects of their work.  
Because each scientist has a unique workflow of activities, and because their workflow changes 
over time, a research challenge is that these systems need to be highly flexible and customizable.  
Another research challenge is to support a range of workflows and processes, from common ones 
that can be reused to those that are highly exploratory in nature.  Such workflows systems must 
enable collaborative design and analysis and be able to coordinate the work of teams of 
scientists.  Finally, workflow systems must also support emerging science processes, including 
crowdsourcing for problems such as data collection and labeling. 

5.5.2 Research Vision: Interactive Analytics 
New research is required to allow scientists to interact with all forms of knowledge relevant 

to the phenomenon at hand, to understand uncertainties and assumptions, and to provide many 
alternative views of integrated information. This will result in a new generation of user interfaces 
focused on interactive analytics, where visualizations and manipulations will be embedded 
throughout the analytic process.  These new intelligent user interfaces and interaction modalities 
should support the exploration not only of data but of the relevant models and knowledge that 
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provide context to the data.  Research activities should flow seamlessly from one user interface 
to another, each appropriate to the task at hand and rich in user context.  

6. General Findings and Recommendations 

Intelligent systems have demonstrated significant transformative impact in the 
commercial sector.  After decades of investment, a variety of artificial intelligence techniques 
have matured and given rise to product recommenders, ad placement systems, self-driving cars, 
speech-based interfaces, and web searches. Billions use these services in their daily lives to great 
benefit. 

However, these approaches are inadequate to meet the challenges presented by 
geosciences research.  First, using data alone is insufficient to create models of the complex 
phenomena under study.  Second, geoscientists need to reach across disciplines to synthesize 
disparate data and models, which requires extensive qualification and context.  Third, scientists 
need powerful partnerships with computers in order to explore complex hypotheses and 
understand how new findings relate to the existing body of knowledge.   

A new generation of geoscience-aware intelligent systems must emerge with a much 
deeper understanding of the physical laws that provide context and structure to the data. 
Major investments in this area have the potential to have transformative impact in artificial 
intelligence research, and at the same time have transformative impact in geosciences as well as 
in other science disciplines and beyond into commercial world. These capabilities would support 
the integration of models from geosciences with other sciences to address the interactions among 
food, energy, and water resources.  In engineering, more complex designs (Internet of Things, 
smart grid, smart cities) would be enabled by these capabilities to harness modeling, diagnosis, 
and prognosis to reduce costs and improve resilience. 

The essence of these advances requires that intelligent systems and geosciences 
researchers work together to formulate knowledge-rich frameworks, algorithms, and user 
interfaces.  Geoscientists need to take an active role in articulating the nature of their problems, 
and in working together with intelligent systems researchers to incorporate new approaches into 
their work and inform subsequent research directions.  Unfortunately, these interactions are not 
likely to occur without significant facilitation. 

This section presents four major general findings and recommendations to facilitate joint 
research between intelligent systems and geosciences.  It also includes specific suggestions for 
short-term follow-on activities.  

6.1 Transformative Effect of Intelligent Systems and Geosciences Collaborations 
 
• Findings: There is an existing foundation of significant research contributions from 

intelligent systems and geosciences collaborations.  Some contributions lie at the 
intersection of those disciplines, such as innovative robotic devices (intelligent systems) 
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to explore the ocean floor (geosciences), novel approaches to learn regularities 
(intelligent systems) in climate data (geosciences), and new frameworks for data 
integration (intelligent systems) of geospatial datasets (geosciences).  Through those 
interactions, new fundamental contributions are enabled in each discipline.  Motivated by 
challenging geoscience problems and datasets, intelligent systems researchers can 
investigate new fundamental techniques to tackle new kinds of complex practical 
problems.  Equipped with an innovative IS technique, geoscientists can apply it to other 
aspects of their work and make transformative advances in their science.  These new 
techniques and advances have significant transformative effect since they tackle problems 
that could not be solved without a cross-disciplinary collaboration and disseminate 
concepts and techniques across fields.  They also have broader impact, since they can 
change how a research community approaches problems.  

• Recommendations: Increasing intelligent systems and geosciences collaborations would 
expand the research contributions and broaden their scope, with significant 
transformative impact in the research agendas of both areas. Although initial grants could 
be obtained through the NSF EAGER programs, but those are limited short-term 
investments that would simply establish initial collaborations. What is needed is multi-
year funding programs that are formulated with multi-disciplinary research in mind. 

6.2 Sustaining and Broadening Intelligent Systems and Geosciences Interactions 
 
• Findings: The interactions between intelligent systems and geosciences are very 

beneficial but still limited. Although the workshop participants were in agreement about 
the benefits of such interactions, they also recognized that the opportunities for intelligent 
systems and geosciences discussions are not many.  The NSF EarthCube program and the 
CISE Expeditions programs have facilitated some important connections in specific 
areas.  There are some workshops focused on intelligent systems for climate and 
environmental science at AAAI and IJCAI among others, but the interactions have been 
limited to the machine learning community.  Other areas of geosciences have not had 
similar events.  On the geosciences side the AGU and other meetings hold sessions on 
informatics, and although there are some sessions in semantics and metadata they tend to 
focus on data management and computation issues rather than novel research 
opportunities. The IS and GEO communities do not have many chances to interact and 
explore collaborations at present. This limits the potential for new scientific contributions 
at the intersection of the two areas and back to the more fundamental research in each 
discipline. 

• Recommendations: Fostering more comprehensive and deeper intelligent systems and 
geosciences interactions will increase and augment the range of research topics pursued 
at the intersection between the disciplines.  The existence of funding programs as 
suggested above will attract researchers from both communities to participate in such 
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events.  Additionally, specific sessions on intelligent systems and geosciences should be 
held at conferences and other events, and special working meetings and retreats on target 
topics of interest should be planned.  Examples include: 

o Creating Special Interest Groups or Research Coordination Networks as part 
of EarthCube.  Interest groups are the basic structures for the conversations 
about EarthCube that take place on the EarthCube web platform. Research 
Coordination Networks are funded projects to support meetings and 
community activities. 

o Establishing working groups under the auspices of the USGS Powell Center.  
This would fund community activities and workshops to start to address some 
of the suggested directions in this report. 

6.3 Growing an Intelligent Systems and Geosciences Research Community 
 
• Findings: Researchers shy away for many reasons from cross-disciplinary research areas, 

and synergistic research in intelligent systems and geosciences falls in this category. 
There is a learning curve to embark on such collaborations, which can hamper the growth 
of this nascent community. In addition, researchers need to be in a position to make those 
investments and reap the results.  A key challenge for researchers interested in this area is 
sustaining multi-year collaborations that enable the initial learning stages and support the 
gradual understanding and generation of ideas and ultimately their realization and 
application.   Moreover, once a collaboration is fruitful there is usually a ripple effect of 
ideas and potential follow on projects that would be productive from the beginning.   
These long-term collaborations are often hard to support and maintain. 

• Recommendations: Sustained multi-year funding programs would attract a substantial 
amount of scientists to pursue synergistic intelligent systems and geosciences research.  
In addition, reducing the growth of the community can be encouraged by reducing this 
learning curve when possible. Developing community research resources would be very 
effective, including: 

o A community-led synthesis of generalizable problems, priorities, and expected 
impact.  An important investment of effort is required for an investigator to 
identify a concrete problem, abstract the aspects that make it applicable to 
other situations, and understand the impact that solving that problem may 
have in other fields.  Community activities to identify, abstract, and 
characterize the impact of key challenges at the intersection of intelligent 
systems and geosciences would help attract researchers to tackle them.  These 
could be accomplished by standing committees with periodic visioning 
retreats and resulting public reports. 

o A community-led repository of datasets and challenge problems. This would 
follow the example of the UC Irvine Machine Learning Repository [Lichman 
2013], which has collected benchmark datasets from other disciplines that are 
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widely used by the machine learning community.  A repository for climate 
related data sets has also been started for climate [CI 2015], but it is still in its 
infancy.  In addition to data, organizing community challenge problems and 
events help attract interest and participation.  Good examples are the machine 
learning challenges organized by ChaLearn, a tax-exempt organization 
founded for the purpose.  Robotics is another area where shared challenges 
have driven the research focus and shown significant improvements over time, 
such as the RoboCup robot soccer tournament steered by a research 
symposium and a shared platform [RoboCup 2015].  Other areas of research 
would benefit from these shared datasets and challenges, including knowledge 
representation, information integration, and intelligent interfaces and 
visualization.   

6.4 Facilitating IS-GEO Communication and Education 
 
• Findings:  Understanding the problems and existing approaches is the basis for new ideas 

and collaborations, but this is very challenging due to the diversity of terminologies and 
conceptualizations in each discipline.   

• Recommendations: Organizing joint intelligent systems and geosciences efforts to 
develop curated collections of materials for learning across disciplines, from simple 
glossaries to educational modules to class syllabi and curricula, which could be 
interlinked and cross-referenced with the literature.  These collections would have 
oversight from a rotating editorial board composed of both intelligent systems and 
geosciences researchers.  The process of identifying and reviewing the materials in the 
collections is likely to lead to new collaborations among contributors, providing 
incentives for researchers to participate in addition to serving the community and 
increasing their name recognition.  These collections could include: 

o A cross-indexed glossary that defines the key terms and concepts used in both 
the intelligent systems and geosciences communities.  Researchers on both 
areas would need to ensure that the descriptions are accessible to the other 
side. 

o A self-study repository for intelligent systems and geosciences researchers to 
quickly learn about relevant topics in the other discipline.  This would consist 
of high-quality, self-contained, accessible, and well-organized modules for 
independent learning.  Materials need not be developed from scratch, but 
would build on the plethora of existing tutorials, papers, and recordings that 
are already available.  Possible vehicles for this work could be the NSF 
Research Traineeship Program (NRT) and ESRI Educational grants.   

o An educational catalog of existing classes, programs, and curricula. Some 
universities have geoinformatics programs, but they tend to focus on data 
management and computational infrastructure rather than intelligent systems 
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or geosciences research topics. Other universities have bioinformatics 
programs that could be used as a basis to jumpstart geoinformatics programs.  
Most universities do not yet offer even a single class in this important 
interdisciplinary area.  This educational catalog would include information on 
existing courses and programs, teaching materials, and instructor interviews to 
share best practices.  This effort could build on the past work by the 
Interdisciplinary Teaching about Earth for a Sustainable Future (InTeGrate) 
project [InTeGrate 2015]. Funding support could be as part of the NSF 
Science of Learning Centers (SLC) and the NSF Idea Labs. 

6.5 Short-Term Follow-Up on Recommendations 
 
Workshop participants identified a number of specific opportunities to follow up on the 

above recommendations:  
 

• Engagement with EarthCube. The participants propose to take actions to engage with 
EarthCube, initially through a Special Interest Group. Interest groups are the basic 
structures for the conversations about EarthCube that take place on the EarthCube Web 
platform. Such a setting allows virtual communities of practice within EarthCube to form 
around common interests. EarthCube also funds coordination meetings and other 
community activities such as Research Coordination Networks (RCN).  

• Engagement with USGS Powell Center. Launched by USGS in 2009, The Powell 
center of the US Geological Survey in Fort Collins, CO aims to develop an analysis and 
synthesis-centered strategy outlining the major natural-science issues facing the Nation in 
the next decade. MOU was signed between USGS and NSF Geosciences Directorate in 
2012. The Powell center provides an excellent framework to jumpstart and establish new 
working groups, by providing facilities and travel support for groups to meet face-to-face 
for a week at a time [USGS 2015]. While it is too late to propose such a working group 
this year (deadline in late April), the participants strongly suggest the community 
members to take advantage of this opportunity in 2016. Marcia McNiff (USGS) gave a 
presentation at the workshop that is available in the workshop web site. 

• Engagement with NSF Research Traineeship Program (NRT). The NRT program 
encourages the development of bold, new, potentially transformative, and scalable 
models for STEM graduate training. NRT grants could focus on developing graduate 
training programs to ensure that geoscience graduate students in research-based master’s 
and doctoral degree programs develop the skills, knowledge, and competencies needed to 
pursue a range of STEM careers. 

• Engagement with NSF Science of Learning Centers (SLC). The SLC program 
encourages the development of large-scale, long-term centers for the long-term 
advancement of Science of Learning research. SLC grants could supports cross-
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disciplinary intelligent systems and geosciences research to build a common groundwork 
of intelligent conceptualization, experimentation and explanation towards a deeper 
understanding of learning of geoscience. 

• Engagement with NSF Idea Labs. An “Ideas Lab” is a new merit review strategy 
coined by NSF to address grand challenges in STEM research and education. NSF has 
launched a new program for “Improving Undergraduate STEM Education” (IUSE) 
through its Division of Undergraduate Education (EHR/DUE). Its “IUSE Phase I Ideas 
Labs” solicits proposals focusing on discipline-specific workforce development needs, 
where geoscience is one of the three identified disciplines. IUSE Phase I Ideas Labs 
grants could support the work on geoscience training initiatives addressed in this report. 

• Engagement with Other Research Initiatives. Many of the initial synergistic research 
and activities reported here came to life under the NSF ITR program and developed 
further into other programs such as the NSF and AFOSR DDDAS programs, and NSF 
EXPEDITIONS and INSPIRE programs. These kinds of programs must be pursued by 
this nascent community as mechanisms for funded collaborations in the near term.   

Workshop participants also suggested organizing specific events at scientific meetings.  Specific 
activities are already ongoing at the International Conference on Computational Science 
(DDDAS workshop), Dynamic Data-Driven Environmental Systems Science Conference, the 
DDDAS session with American Controls Conference, and the Climate Informatics Workshop 
series.  Additional opportunities are presented by specific meetings in geosciences including the 
American Geophysical Union (AGU) Fall Meeting (held annually in December), the Geological 
Society of America’s Annual Meeting (held annually in November), the American Physical 
Society Focus Group on Climate (yearly meeting in March), the SIAM Geosciences (yearly 
meeting in June), and the International Environmental Modeling and Software Systems (iEMSs) 
conference (biannual event held in June).  
 
In the intelligent systems area, conferences such as the International Joint Conference in AI 
(IJCAI) and the annual Conference of the Association for the Advancement of Artificial 
Intelligence (AAAI) have held sustainability tracks that could be expanded to other areas of 
geosciences.   
 
Other target conferences include the International Conference on Machine Learning (ICML), the 
ACM Conference on Knowledge Capture (K-CAP), the ACM Intelligent User Interfaces (IUI) 
conference, the IEEE Visual Analytics Science and Technology (VAST), the IEEE Information 
Visualization (InfoVis), and the IEEE Scientific Visualization (SciVis).  There is a void of high 
quality conferences in geoinformatics in general, which presents an opportunity for synergies in 
this space centered on intelligent systems for geosciences. 
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7. Conclusions  

This workshop investigated how new research in intelligent systems could enable 
groundbreaking geosciences research.  In recent years, intelligent systems have demonstrated 
significant transformative impact in the commercial sector.  These techniques have been applied 
to geosciences with some success, but they are inadequate to meet the challenges presented by 
geosciences research. First, using data alone is insufficient to create models of the complex 
phenomena under study. Second, geoscientists need to reach across disciplines to synthesize 
disparate data and models, which requires extensive qualification and context. Third, scientists 
need powerful partnerships with computers in order to explore complex hypotheses and 
understand how new findings relate to the existing body of knowledge. Therefore, in order to 
tackle complex geosciences phenomena new approaches are needed. 

A new generation of geoscience-aware intelligent systems needs to emerge with a much 
deeper understanding of the physical laws that provide context and structure to the data. This 
report presents research opportunities in information and intelligent systems inspired by 
geosciences challenges.  Crucial capabilities are needed that require major research in knowledge 
representation, robust sensors, information integration, machine learning, and interactive 
analytics.  

Enabling these advances requires that intelligent systems and geosciences researchers work 
together to formulate knowledge-rich frameworks, algorithms, and user interfaces. Recognizing 
that these interactions are not likely to occur without significant facilitation, workshop 
participants made four major recommendations to facilitate this collaborative research.  First, 
long-term sustained funding programs are needed to foster collaborations across these 
disciplines.  Second, research coordination networks and annual events would enable sustained 
communication across these fields that do not typically cross paths.  Third, repositories of 
challenge problems and datasets with crisp challenge statements would lower the barriers to 
getting involved.  Fourth, a curated repository of learning materials to educate researchers and 
students alike is needed to reduce the steep learning curve involved in understanding advanced 
topics in the other discipline. 

Major investments in this area have the potential to have transformative impact in artificial 
intelligence research, and at the same time have transformative impact in geosciences as well as 
in other science disciplines and beyond into commercial world.   

Acknowledgments 

This work was sponsored by the Directorate for Computer and Information Science and 
Engineering and the Directorate for Geosciences of the US National Science Foundation under 
grant number IIS-1533930.  The authors would like to thank CISE and GEO Program Directors 
for their guidance and suggestions, in particular Hector Muñoz-Avila and Eva Zanzerkia for their 



 58 

guidance, and Todd Leen, Frank Olken, Sylvia Spengler, Amy Walton, and Maria Zemankova 
for suggestions and feedback. 

References 

[ChaLearn 2015]  Challenges in Machine Learning.  http://www.chalearn.org/.  Last accessed 
July 21, 2015. 

[CI 2015] Climate Informatics.  http://www.climateinformatics.org/?q=data-sets/.  Last accessed 
July 21, 2015. 

[Che 2015] Zhengping Che, David C. Kale, Wenzhe Li, Mohammad Taha Bahadori, and Yan 
Liu. Deep Computational Phenotyping. Proceedings of the 21st ACM Conference on 
Knowledge Discovery and Data Mining (SIGKDD), 2015. 

[Gil et al 2014] Gil, Y.; Chan, M.; Gomez, B.; and B. Caron (Eds). “EarthCube: Past, Present, 
and Future.”  EarthCube Project Report EC-2014-3, 2014. 

[InTeGrate 2015]  Interdisciplinary Teaching about Earth for a Sustainable Future. 
http://serc.carleton.edu/integrate/participate/index.html.  Last accessed July 21, 2015. 

[Kawale et al. 2013] Kawale, J., S. Liess, A. Kumar, M. Steinbach, P. Snyder, V. Kumar, A. R. 
Ganguly, N. F. Samatova, and F. Semazzi.  “A graph-based approach to find teleconnections 
in climate data.” Stat. Anal. Data Mining, 6, 158-179, 2013. 

[Lichman 2013] Lichman, M. (2013). UCI Machine Learning Repository 
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information 
and Computer Science. 

[Liess et al. 2014] Liess, S., A. Kumar, P. K. Snyder, J. Kawale, K. Steinhaeuser, F. H. M. 
Semazzi, A. R. Ganguly, N. F. Samatova, and V. Kumar.  “Different modes of variability 
over the Tasman Sea: Implications for regional climate.” J. Climate, 27, 8466-8486, 2014. 

[NRC 2012] National Research Council, New Research Opportunities in the Earth Sciences at 
the National Science Foundation, Committee on new Research Opportuniteis in the Earth 
Sciences; National Research Council, ISBN 978-0-309-21924-2, National Academies Press, 
Washington, DC, p. 216.  

[NRC, 2012a] National Research Council, Challenges and Opportunities in the Hydrologic 
Sciences, Committee on Challenges and Opportunities in the Hydrologic Sciences, Water 
Science and Technology Board, Division on Earth and Life Studies, ISBN: 978-0-309-
22283-9, National Academies Press, Washington, DC, p. 188. 



 59 

 [NRC 2013] National Research Council, Solar and Space Physics: A Science for a 
Technological Society, Committee on a Decadal Strategy for Solar and Space Physics 
(Heliophysics); Space Studies Board; Aeronautics and Space Engineering Board; Division of 
Earth and Physical Sciences; National Research Council, ISBN 978-0-309-16428-3, National 
Academies Press, Washington, DC, p. 466.  

[NRC 2014a] National Research Council, Review of the National Science Foundation's Division 
on Atmospheric and Geospace Sciences Draft Goals and Objectives Document, Committee 
to Review the NSF AGS Draft Science Goals and Objectives, ISBN 978-0-309-31048-2, 
National Academies Press, Washington, DC, p. 36.  

[NRC 2014b] National Research Council, Sea Change: 2015-2025 Decadal Survey of Ocean 
Sciences, Committee on Guidance for NSF on National Ocean Science Research Priorities: 
Decadal Survey of Ocean Sciences, Ocean Studies Board; Division on Earth and Life 
Studies, ISBN 978-0-309-36688-5, National Academies Press, Washington, DC, p. 98.  

[NSF 2014] “Dynamic Earth: GEO Imperatives and Frontiers 2015-2020.” National Science 
Foundation, eds. NSF Advisory Committee for Geosciences. 

[Peters et al. 2014] Peters SE, Zhang C, Livny M, Ré C (2014) “A Machine Reading System for 
Assembling Synthetic Paleontological Databases.” PLoS ONE 9(12): e113523. 
doi:10.1371/journal.pone.0113523. 

[Pundsack et al. 2013] Pundsack J, Bell R, Broderson, D, Fox GC, Dozier J, Helly J, Li W, 
Morin P, Parsons M, Roberts A, Tweedie C, Yang C (2013) “Report on Workshop on 
Cyberinfrastructure for Polar Sciences.” St. Paul, Minnesota. University of Minnesota Polar 
Geospatial Center, 17pp. 

[RoboCup 2015] RoboCup.  http://www.robocup.org/.  Last accessed July 21, 2015. 

[USGS 2015] USGS Powell Center Proposals.  https://powellcenter.usgs.gov/proposals. Last 
accessed July 21, 2015. 

 


